Skip Nav Destination
Close Modal
By
Shiladitya Paul
By
David M. Sanders, Joseph W. Glaser, Steven Falabella
By
Hermann A. Jehn, Andreas Zielonka
By
Marita L. Berndt, Christopher C. Berndt
By
S.R. Freeman
By
Jose L. Villalobos, Graham Bell
By
Robert H. Heidersbach, James Brandt, David Johnson, John S. Smart, III, John S. Smart
By
Stephen D. Cramer
By
William G. Yelton, Jason C. Harper
Search Results for
cathodic coating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 616
Search Results for cathodic coating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Cathodic electrodeposition coating system. (1) Load area. (2) Conveyor. (3)...
Available to PurchasePublished: 01 January 1994
Fig. 6 Cathodic electrodeposition coating system. (1) Load area. (2) Conveyor. (3) Pretreatment. (4) Deionized water rinse. (5) Electrodeposition tank. (6) Recirculated permeate rinse. (7) Fresh permeate rinse. (8) Deionized water rinse. (9) Dryoff. (10) Curing oven. (11) Deionized quench
More
Image
Coating adhesion loss along the edge of a cathodically protected area of pi...
Available to PurchasePublished: 30 September 2015
Book Chapter
Corrosion Control for Marine- and Land-Based Infrastructure Applications
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005709
EISBN: 978-1-62708-171-9
... Abstract Corrosion of marine- and land-based infrastructure is of major concern and its control forms an important objective. Thermal spray coatings (TSCs) are widely used for corrosion protection. This article focuses on two types of TSCs: cathodic or noble coatings and anodic or sacrificial...
Abstract
Corrosion of marine- and land-based infrastructure is of major concern and its control forms an important objective. Thermal spray coatings (TSCs) are widely used for corrosion protection. This article focuses on two types of TSCs: cathodic or noble coatings and anodic or sacrificial coatings. It describes the factors affecting the performance of sacrificial TSCs in atmospheric and immersion environments. The article provides information on the applications of sacrificial TSCs, non-sacrificial coatings, and sealants/top coats, and exemplifies the use of sacrificial TSCs on structures for corrosion protection.
Book Chapter
Arc Deposition
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001291
EISBN: 978-1-62708-170-2
... coatings that will be described in this article. Although the use of ion trajectory control to improve coating properties has not been extensively explored, it has been used to overcome the major drawback of the cold cathodic arc process: the production of micron-scale particles of electrode material...
Abstract
This article describes the characteristics of continuous cathodic arc sources and filtering process for removing macroparticles from a cathodic arc. It provides information on the types of arc sources and the properties of deposited materials. The advantages, limitations, and applications of arc deposition are also discussed.
Book Chapter
Corrosion Testing of Coatings
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001296
EISBN: 978-1-62708-170-2
... are schematically illustrated in Fig. 1 . In the case of a more noble coating ( Fig. 1a ), the corrosion medium reaches the substrate material, and a galvanic cell is formed between the anodic substrate material and the cathodic coating material. This results in strong local corrosion of the substrate. The anodic...
Abstract
This article focuses on the testing and typical corrosion behavior of coating-substrate systems in aqueous solutions and humid aggressive atmospheres. It includes a short review of the fundamentals of corrosion, followed by a discussion of specific system behavior, electrochemical and laboratory accelerated tests, and simulated service tests. The article also contains examples of different types of corrosion damage and presents guidelines for improving corrosion resistance.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003672
EISBN: 978-1-62708-182-5
..., metallic coatings can sometimes provide cathodic protection when the coating is compromised. Metallic coatings and other inorganic coatings are produced using a variety of techniques, including hot dipping, electroplating, cladding, thermal spraying, chemical vapor deposition, or surface modification using...
Abstract
This article discusses the factors affecting corrosion behavior. It describes galvanic corrosion and its protection methods. The article also provides information on coatings and inhibitors, which are used in corrosion protection.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003697
EISBN: 978-1-62708-182-5
... of the terminology of cathodic protection still relates to corrosion control of onshore buried steel pipelines. Virtually all modern pipelines are coated with an organic protective coating that is supplemented by cathodic protection systems sized to prevent corrosion at gaps or holidays in the protective coating...
Abstract
Cathodic protection is an electrochemical means of corrosion control in which the oxidation reaction in a galvanic cell is concentrated at the anode, which suppresses corrosion of the cathode in the same cell. This article provides a detailed discussion on the fundamentals and types of cathodic protection as well as their power sources and design considerations. The criteria for the cathodic protection and types of materials used in sacrificial anodes and impressed-current anodes are also discussed. The article provides examples selected for familiarizing the design engineer with the steps for selecting a specific corrosion control method.
Image
Schematic illustration of corrosion of coating substrate systems in the pre...
Available to PurchasePublished: 01 January 1994
Fig. 1 Schematic illustration of corrosion of coating substrate systems in the presence of pores. M, metal. (a) More noble coating on less noble substrate (galvanic corrosion). Increased corrosion of substrate material, small anodic area, large cathodic area. (b) Less noble coating on more
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004113
EISBN: 978-1-62708-184-9
... the tank is in contact with the soil. This article describes the soil characteristics and addresses cathodic protection (CP) criteria for submerged metallic piping systems. It provides information on the data required for designing a CP system, alone or in conjunction with a protective coating system...
Abstract
Steel storage tanks are the primary means for storing large volumes of liquids and gaseous products. The stored fluid could be water, but it could also be volatile, corrosive, and flammable fluid requiring special precautions for storage as well. Corrosion is generally worst where the tank is in contact with the soil. This article describes the soil characteristics and addresses cathodic protection (CP) criteria for submerged metallic piping systems. It provides information on the data required for designing a CP system, alone or in conjunction with a protective coating system. These data are collected from predesign site assessments, tank electrical characteristics, and soil-resistivity measurements. The article addresses NACE Standard RP0169, which gives requirements and desired characteristics for coating in conjunction with CP. It also explains the methods of protecting aboveground storage tanks and underground storage tanks.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003607
EISBN: 978-1-62708-182-5
.... Galvanic corrosion of the substrate can occur at pores, damage sites, and edges in the noble metal coating. Sacrificial metal coatings provide cathodic protection of the more noble base metal, as in the case of galvanized steel or Alclad aluminum. Cathodic Protection Magnesium, zinc, and aluminum...
Abstract
This article describes the various factors that affect the extent of corrosion resulting from galvanic coupling. The factors include galvanic series, polarization behavior, and geometric relationship of metals and alloys. The article briefly discusses the various modes of attack that lead to galvanic corrosion of anodic members. It also explains the three electrochemical techniques of screening tests for predicting galvanic corrosion. The electrochemical techniques comprise of potential measurements, current measurements, and polarization measurements. The article provides a detailed discussion on the performance of alloy groupings. It concludes with information on various control methods that reduce or eliminate galvanic-corrosion effects.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001248
EISBN: 978-1-62708-170-2
... zinc plating ZINC is anodic to iron and steel and therefore offers more protection when applied in thin films of 7 to 15 μm (0.3 to 0.5 mil) than similar thicknesses of nickel and other cathodic coatings, except in marine environments where it is surpassed by cadmium (which is somewhat less anodic...
Abstract
Commercial zinc plating is accomplished by a number of distinctively different systems: cyanide baths, alkaline noncyanide baths, and acid chloride baths. This article focuses on the composition, advantages, disadvantages, operating parameters, and applications of each of the baths. It provides information on the control of thicknesses of zinc specified for service in various indoor and outdoor atmospheres and on the similarities between cadmium and zinc plating.
Book Chapter
Thermal Spray Coatings
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003690
EISBN: 978-1-62708-182-5
... coatings is production of anodes for cathodic protection of steel reinforcement in concrete. Thermal spraying is virtually unlimited in scale and complexity of applications, ranging from small fasteners to structures. Production of coatings is rapid and can be automated. Other advantages of thermal spray...
Abstract
This article provides an overview of thermal spray processes. It describes the microstructural character of thermal spray coatings as well as the criteria for coating selection. The optimization, parameterization, and surface preparation and treatments for the thermal spray coatings are also discussed. The article illustrates the adhesion of polymer coatings and the thermal spray process used to remove lead-base paint. It provides information on the specifications, standardization, and guidelines for thermal spray applicators.
Image
Corrosion pit formation in a substrate beneath a void in a duplex noble met...
Available to PurchasePublished: 01 January 2003
Fig. 5 Corrosion pit formation in a substrate beneath a void in a duplex noble metal coating. The top coating layer (M 1 ) is cathodic to the coating underlayer (M 2 ), which is in turn cathodic to the substrate (M 3 ). As in Fig. 4 , the coating tends to collapse into the pit. Source: Ref 2
More
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006038
EISBN: 978-1-62708-172-6
... industry. abrasion resistance blistering cathodic protection pipeline coatings polyurethanes thermal resistance THIS ARTICLE DESCRIBES the coating materials, surface-preparation requirements, and application techniques used to protect underground pipelines. It provides valuable insight...
Abstract
This article describes the coating materials, surface-preparation requirements, and application techniques used to protect underground pipelines. It provides a valuable insight into the types of polymer-based coatings that are both cost-effective and widely accepted in the pipeline industry.
Book Chapter
Analysis and Prevention of Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... because there is limited cathodic reaction possible. If the surface of the metal is coated with paint or other nonconducting film, the rates of both anodic and cathodic reactions will be greatly reduced and corrosion will be retarded. A corrosion inhibitor is a substance that, when added in small...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Book Chapter
Corrosion in Wastewater Systems
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004104
EISBN: 978-1-62708-184-9
... and ductile iron should be coated with a material suitable for use in immersed exposures. Figure 2 illustrates a sample of a submerged steel structural member that has lost the protection provided by the coating system. Due to the corrosive nature of the wastewater treatment process streams, cathodic...
Abstract
This article provides information on predesign surveys and the various testing procedures associated with wastewater treatment plants. These include soil testing, atmospheric testing, and hydrogen sulfide testing. The primary parameters that influence the production of sulfides within the piping system that transports the wastewater to the treatment facility are discussed. The article describes the corrosion performance of various materials in the soil, fluid, and atmospheric exposures. These include concrete, steel, ductile iron, aluminum, copper, brass, stainless steel, and coatings used for wastewater facilities.
Book Chapter
Marine Cathodic Protection
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004109
EISBN: 978-1-62708-184-9
... of the electrolyte (freshwater, concrete) makes sacrificial anodes impractical. Cathodic Protection of Marine Pipelines Corrosion control of marine pipelines is usually achieved through the use of protective coatings and supplemental CP. A variety of organic protective coatings can be used. They are usually...
Abstract
Cathodic protection (CP) is an electrochemical means of corrosion control widely used in the marine environment. This article discusses two types of CP systems: impressed current systems and sacrificial anode (passive) systems. It describes the anode materials used in these systems and the CP criteria. The article examines the design considerations and procedures involved in the CP of marine pipelines, offshore structures, and ship hulls. An illustration of sacrificial anode calculation is also provided.
Book Chapter
Introduction to Corrosion in Specific Environments
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004100
EISBN: 978-1-62708-184-9
... cathodic protection. Sacrificial anodes are often chosen for offshore platforms because they are simple, rugged, and become effective immediately on platform launch. The primary corrosion protection for ship hulls is provided by coatings, augmented by cathodic protection to protect areas of coatings...
Abstract
This article describes the various environments affecting corrosion performance, corrosion protection, and corrosion control. These include freshwater environments, marine environments, and underground environments. The article provides information on corrosion in military environments and specialized environments, representing less-well-known environments with more limited applications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001250
EISBN: 978-1-62708-170-2
... on their surfaces. A tin deposit provides sacrificial protection to copper, nickel, and many other nonferrous metals and alloys. Tin also provides good protection to steel. However, because tin is normally cathodic to iron, the coating must be continuous and effectively pore-free. (This requirement does not apply...
Abstract
A tin deposit provides sacrificial protection to copper, nickel, and many other nonferrous metals and alloys. Tin also provides good protection to steel. Tin can be deposited from either alkaline or acid electrolytes. This article explains the compositions and operating conditions of these electrolytes.
Book Chapter
Electroplated Coatings for Friction, Lubrication, and Wear Technology
Available to PurchaseSeries: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
... coated) is the negatively charged electrode. The electrolyte solution contains charged metal ions and other charged particles that allow for current flow between the anode and cathode, completing the electrical circuit. Positively charged metal ions (cations) migrate toward the cathode and are discharged...
Abstract
This article discusses the fundamentals of electroplating processes, including pre-electroplating and surface-preparation processes. It illustrates the four layers of a plating system, namely, top or finish coat, undercoat, strike or flash, and base material layers. The article describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings, including hard coatings and soft coatings. The article also details the materials available for electroplating, including electroplated chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion on the common issues encountered with electroplating.
1