Skip Nav Destination
Close Modal
By
James R. Ciulik, John A. Shields, Jr., Prabhat Kumar, Todd Leonhardt, John L. Johnson
Search Results for
catalyst powder processing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 244 Search Results for
catalyst powder processing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001317
EISBN: 978-1-62708-170-2
... provides information on catalyst powder processing. active carriers beading catalyst catalyst powder processing catalyst preparation chemical activity chemical process extrusion honeycombing impregnation inert carriers ion exchange precipitation spray drying tableting A CATALYST...
Abstract
The chemical process being catalyzed should have a high productivity within a specified reactor volume with high reaction rates for the desired reactions and low rates for undesired reaction pathways. This article reviews the general catalyst preparation procedures, namely, impregnation, ion exchange, and precipitation. Catalyst carriers are usually high-surface-area inorganic materials with complex pore structures, into which catalytic materials such as palladium, platinum, cobalt, chromium oxide, and vanadium pentoxide are deposited using these procedures. The article also provides information on catalyst powder processing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003035
EISBN: 978-1-62708-200-6
... improve the performance of polyester by upgrading mechanical strength, impact resistance, stiffness, and dimensional stability. Other additives are catalysts, fillers, thickeners, mold release agents, pigments, thermoplastic polymers, polyethylene powders, flame retardants, and ultraviolet absorbers, all...
Abstract
Sheet molding compounds (SMCs) refers to both material and process for producing glass-fiber-reinforced polyester resin items. This article discusses the material components incorporated into the resin paste for desirable processing and molding characteristics and optimum physical and mechanical properties, including catalyst, fillers, thickeners, pigments, thermoplastic polymers, flame retardants, and ultraviolet absorbers. It talks about the mixing techniques available for SMC resin pastes, including batch, batch/continuous, and continuous mixing. The article also outlines the design features and the operations of continuous-belt and beltless machine type SMCs.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005354
EISBN: 978-1-62708-187-0
... Abstract No-bake sand molds are based on the curing of inorganic or organic binders with either gaseous catalysts or liquid catalysts. This article reviews the major aspects of no-bake sand bonding in terms of coremaking, molding methods, and sand processing. It discusses the points to be noted...
Abstract
No-bake sand molds are based on the curing of inorganic or organic binders with either gaseous catalysts or liquid catalysts. This article reviews the major aspects of no-bake sand bonding in terms of coremaking, molding methods, and sand processing. It discusses the points to be noted in handling sand-resin mixtures for no-bake molds or cones and lists some advantages of no-bake air-set cores and molds. The article describes the process procedures, advantages, and disadvantages of gas curing and air-setting hardening of sodium silicates. It examines the members of the air-setting organic binders, namely, furan no-bake resins, phenolic no-bake resins, and urethanes. The article provides an overview of gas-cured organic binders. It also illustrates the three commercial systems for sand reclamation: wet reclamation systems, dry reclamation systems, and thermal reclamation.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006009
EISBN: 978-1-62708-172-6
... with pigments, additives, and catalysts, followed by homogenizing in a kneader-extruder, then ground and screened to make powder coatings. Powder coatings typically are applied by electrostatic spray and then are heated to melt and cure the coating. The polyesters used are amorphous, with 2000 to 6000 molecular...
Abstract
This article provides a discussion on polyester coating applications such as powder coatings, can coatings, and automotive paints. It includes an overview, structure, properties, and benefits of vinyl ester resins. The article discusses the additives for both unsaturated polyester and vinyl ester coatings, namely, curing systems, thixotropic agents and fillers. It exemplifies polyester and vinyl ester coating, lining and flooring systems that are used for top-to-bottom protection of industrial plants and equipment. The article also highlights the concerns to be addressed when using polyesters and vinyl esters.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006135
EISBN: 978-1-62708-175-7
... entering the furnace Assist in the delubing (also called dewaxing or debinding ) portion of the sintering process Sweep reaction products toward the front of the furnace Reduce surface oxides on the powder particles in the part Control carbon on the surface and in the core of parts...
Abstract
Sintering atmosphere protects metal parts from the effects of contact with air and provides sufficient conduction and convection for uniform heat transfer to ensure even heating or cooling within various furnace sections, such as preparation, sintering, initial cooling, and final cooling sections. This article provides information on the different zones of these furnace sections. It describes the types of atmospheres used in sintering, namely, endothermic gas, exothermic gas, dissociated ammonia, hydrogen, and vacuum. The article concludes with a discussion on the furnace zoning concept and the problems that arise when these atmospheres are not controlled.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... in the articles “Boriding (Boronizing) of Metals” and “Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels” in this Volume. The traditional pack consists of four components: the substrate or part to be coated, the master alloy (i.e., a powder of the element or elements to be deposited...
Abstract
Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications of pack cementation aluminizing, which is used to improve the performance of steels in high-temperature corrosive environments.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003366
EISBN: 978-1-62708-195-5
... characteristics of phenolic resins for these processes are summarized in Table 3 . Phenolic resins for composites Table 3 Phenolic resins for composites Composites manufacturing process Resin type (solvent) (a) Viscosity at 25 °C (77 °F) Catalyst Cure temperature Pa · s cP °C °F...
Abstract
This article describes the chemistry of phenolic resins and reviews their characteristics and properties for various composites fabrication processes. The fabrication processes include solution/hot-melt process, pultrusion, vacuum infusion, filament winding, sheet molding, and hand lay-up. The article illustrates the manufacturing process of phenolic honeycomb and provides information on the applications of phenolic composites.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005242
EISBN: 978-1-62708-187-0
.... Expendable pattern methods, such as lost foam casting and investment (lost wax) casting, are also capable of producing more intricate patterns and castings (see the article “Introduction: Expendable Mold Processes with Expendable Patterns” in this Volume). Fig. 1 Major components of a sand mold...
Abstract
This article reviews the basic types of mold aggregates and bonding methods for expendable molds and coremaking. It provides an overview of mold media and the basic types of sands and their properties. The most significant clays used in green sand operations, such as bentonites, are discussed. The article describes the methods of sand bonding with inorganic compounds. It provides a description of resin-bonded sand systems: no-bake binder systems, heat-cured binder systems, and cold box binder systems. The article concludes with a discussion on the media used for expendable molds, namely, ceramic shells and rammed graphite, for casting reactive metals such as titanium or zirconium.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006122
EISBN: 978-1-62708-175-7
... Abstract This article discusses the methods for producing powder metallurgy (PM) nickel powders, including carbonyl process, hydrometallurgical process, hydrogen reduction process, and atomization process, as well as their applications. It describes three processes for producing nickel alloy...
Abstract
This article discusses the methods for producing powder metallurgy (PM) nickel powders, including carbonyl process, hydrometallurgical process, hydrogen reduction process, and atomization process, as well as their applications. It describes three processes for producing nickel alloy powders: water atomization, high-pressure water atomization, and gas atomization. The article also provides information on the applications of PM hot isostatic pressing in the oil and gas industry.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001746
EISBN: 978-1-62708-178-8
... dried. Optimum homogeneity of graphite-bearing metals is found in solid specimens. Chip specimens are bored or milled from solid materials. During the process, graphite may segregate from the material as graphite powder, creating a carbon loss. When a chip sample of a graphitic material must be used...
Abstract
High-temperature combustion is primarily used to determine carbon and sulfur contained in a variety of materials. This article illustrates the principle of combustion and focuses on the characteristics of accelerators. It provides information on the process of separating oxide compounds formed in the combustion zone. The article provides information on infrared and thermal-conductive detectors, which are used for the detection of CO2 and SO2. Finally, it addresses the requirements of a sample to undergo total and selective combustion, and presents examples showing the applications of high-temperature combustion. .
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003150
EISBN: 978-1-62708-199-3
..., but equally pervasive, are the use of platinum-group metals as catalysts in automotive pollution-control equipment and for making the spinnerettes used in the manufacture of synthetic fibers for clothing; the use of silver for photographic processes; the use of gold, palladium, and their alloys in printed...
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003367
EISBN: 978-1-62708-195-5
... of catalyst is important to the curing process of CE resins. Studies performed by D. Shimp et al. show that cure rates can vary depending on the type, addition level, and whether or not a reaction accelerator is used. The most common type of catalysts are chelates and carboxylate salts of transition metals...
Abstract
Cyanate ester resins are a family of high-temperature thermosetting resins that bridge the gap in thermal performance between engineering epoxy and high-temperature polyimides. This article discusses the chemistry, properties and characteristics of the cyanate ester resins. It describes the processing procedures for the cyanate ester resins and provides information on properties for selected applications, such as space applications, radomes, and printed circuit boards.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
... and controlled, furnace atmospheres provide the source of elements in some heat treating processes, surface cleansing of parts being treated in other processes, and a protective environment to guard against adverse effects of air when metals are exposed to elevated temperatures in still other processes...
Abstract
This article provides a detailed discussion on the types of furnace atmospheres required for heat treating. These include generated exothermic-based atmospheres, generated endothermic-based atmospheres, generated exothermic-endothermic-based atmospheres, generated dissociated-ammonia-based atmospheres, industrial gas nitrogen-base atmospheres, argon atmospheres, and hydrogen atmospheres. Atmospheres for backfilling, partial pressure operation, and quenching in vacuum are also discussed. Furnace atmospheres constitute four major groups of safety hazards in heat treating: fire, explosion, toxicity, and asphyxiation. The article reviews the fundamentals of principal gases and vapors. It describes how the evaluation of the atmospheric requirements of heat treating furnaces is influenced by factors such as cost of operation and capital investment.
Book Chapter
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006123
EISBN: 978-1-62708-175-7
... of 19.3 g/cm 3 , and the highest melting point of all metals at 3410 °C (6170 °F). While tungsten has been cast using arc-cast and electron-beam processes, consolidation of tungsten powders is based almost exclusively on powder metallurgical techniques. Tungsten carbide accounts for approximately 60...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003602
EISBN: 978-1-62708-182-5
... for concern is the instability of PTFE, which causes weeping of the electrodes. Most developers use noble metal catalysts; some use nonnoble catalysts. Spinels and perovskites are being developed in an attempt to lower the cost of the electrodes. Development of low-cost manufacturing processes includes powder...
Abstract
This article describes the ideal performance of various low-temperature and high-temperature fuel cells that depends on the electrochemical reactions that occur between different fuels and oxygen. Low-temperature fuel cells, such as polymer electrolyte, alkaline, and phosphoric acid, and high-temperature fuel cells, such as molten carbonate and solid oxide, are discussed. The article contains tables that provide information on the evolution of cell-component technology for these fuel cells. It concludes with information on the advantages and limitations of the fuel cells.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006041
EISBN: 978-1-62708-172-6
... in different solvents. A step in this processing was the removal of the original carrier solvent. This yielded a solid, flakelike resin. This form was later marketed for use in powder coating applications. The flakelike resins had a T g slightly above room temperature and therefore remained solid in storage...
Abstract
This article provides background information on the chemistry, coating properties, resin types, applications techniques, and performance characteristics of fluoroethylene vinyl ether (FEVE) resins. It describes the formulation methods of FEVE resins, namely, solvent-based coating formulations, water-based coating formulations, and powder coating formulations. The basic concerns to be addressed when formulating and using FEVE coatings are also discussed. The article concludes with a section on health and related safety regulations.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006134
EISBN: 978-1-62708-175-7
... characteristics that are dependent on the material processing method. Since the powder characteristics are among the major factors in determining the porous material properties of the finished component, reproducible powder characteristics and manufacturing methods are critical to production of a consistent...
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003370
EISBN: 978-1-62708-195-5
... strength, impact resistance, stiffness, and dimensional stability. Other additives are catalysts, fillers, thickeners, mold release agents, pigments, thermoplastic polymers, polyethylene powders, flame retardants, and ultraviolet absorbers, all of which are mixed by the SMC manufacturer to exact...
Abstract
Molding compounds are plastic materials in varying stages of pellets or granulation that consist of resin, filler, pigments, reinforcement, plasticizers, and other ingredients ready for use in a molding operation. This article describes the material components and physical properties of sheet molding compounds (SMC). The three types of resin paste mixing techniques, such as batch, batch/continuous, and continuous, for an SMC operation are reviewed. The article discusses the design features and functional operations of the two types of SMC machines, namely, continuous-belt and beltless machines. It explains the formulation and processing of bulk molding compounds and reviews molding methods for bulk molding compounds, including compression, transfer, and injection molding. The effects of the fiber type and length and the matrix type on thermoset bulk molding compounds are discussed. It describes the four injection molding processes of injection molding compounds such as feeding, transporting, injecting, and flowing.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006297
EISBN: 978-1-62708-179-5
.... Urethane polymer is formed during a delayed curing process, with CO 2 gas as a by-product. The optimal resin level is 0.7 to 2%, based on the weight of sand; the catalyst level varies between 0.4 and 10%, based on the amount of part A. The ratio of part A to part B is usually 50:50. The PUNB system has...
Abstract
Aggregate molding, or sand casting, is the gravity pouring of liquid metal into a mold that is made of a mixture molded against a permanent pattern. This article summarizes the most important materials in the process of sand casting of cast iron, including different types of molding aggregates, clays, water, and additives in green sand, chemically bonded organic resins, and inorganic binders in self-setting, thermosetting, and gas-triggered systems. It discusses three main types of reclamation systems: wet, dry, and thermal. The article concludes with a description of both nonpermanent and permanent mold processes.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006081
EISBN: 978-1-62708-175-7
... and low-alloy steels are classified into three general types depending on the alloying process ( Fig. 2 ). Prealloyed powders are produced by melting and subsequent atomization, so powder particles are of similar alloy composition. In contrast, admixed powders are alloyed during sintering, which requires...
Abstract
This article briefly reviews the production methods and characteristics of plain carbon and low-alloy water-atomized iron and steel powders, high-porosity iron powder, carbonyl iron powder, and electrolytic iron powder. It emphasizes on atomized powders, because they are the most widely used materials for ferrous powder metallurgy. The article provides information on the properties and applications of these powders. It also includes an overview of diffusion alloying, basics of admixing, and bonded premixes.
1