Skip Nav Destination
Close Modal
Search Results for
casting quality
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1423 Search Results for
casting quality
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003176
EISBN: 978-1-62708-199-3
.... casting design casting tolerances design considerations foundry quality assurance solidification simulation models DESIGNING A COMPONENT as a casting requires special consideration be given to how the part will solidify. In addition to the general guidelines given in this article, design manuals...
Abstract
This article provides general guidelines for casting design to provide progressive solidification, minimize heat concentration, eliminate cores, and prevent distortion. Casting design also affects tolerances. Casting tolerances depend on the alloy being poured, the size of the casting, and the molding method used. Designers can predict the effect of the design on the structure of the final part using solidification simulation models, namely finite element and finite difference models, and rapid prototyping. The article concludes with a short note on how the quality is assured in the foundry.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006334
EISBN: 978-1-62708-179-5
.... carbon-silicon content cast iron chill and wedge tests compacted graphite iron contraction-expansion balance cooling curves ductile iron graphite nucleation graphite shape graphitization hardness immersion steel sampling device quality control solidification tensile strength thermal...
Abstract
This article describes different methods by which the composition of cast iron can be analyzed. It provides particular emphasis on the methods for evaluating the graphitization potential of a melt with prescribed limits on carbon, silicon, and alloying elements. The article discusses the effect of cooling rate on the graphitization of a given composition by chill and wedge tests. Thermal analysis of cooling curves gives excellent information about the solidification and subsequent cooling of cast iron alloys. The article presents some applications of the cooling curve analysis and explains the evaluation of carbon-silicon contents, graphite shape, graphite nucleation, and contraction-expansion balance. It illustrates the use of an immersion steel sampling device for compacted graphite iron production and provides information on the ferrite-pearlite ratio in ductile iron.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006508
EISBN: 978-1-62708-207-5
... cycle from mold filling to fusion, cooling, and part ejection. The article also provides information on casting quality, discussing dimensional tolerances, fold defects, and porosity. expendable pattern casting fold defects lost foam casting porosity sand casting Introduction Lost foam...
Abstract
Lost foam casting is a sand casting process in which the mold consists of an evaporative polystyrene foam pattern embedded in sand. It is especially well suited for making complex parts with convoluted features such as engine blocks, transmission cases, and cylinder heads. This article describes the lost foam casting process and its primary advantages, including the elimination of flash and parting lines, the relative ease of prototyping with foam, and the ability to incorporate multiple metals, whether in sections or layers, through sequential pours. It illustrates an entire process cycle from mold filling to fusion, cooling, and part ejection. The article also provides information on casting quality, discussing dimensional tolerances, fold defects, and porosity.
Image
Published: 01 December 2008
Fig. 17 Quality index of A356-T6 alloy castings at three cooling rates. Curve 1, 1.5 °C/s; curve 2, 0.5 °C/s; curve 3, 0.08 °C/s. Source: Ref 80
More
Image
Published: 01 December 1998
Image
in 357.0 and Variations A357.0 to F357.0[1]: Al-Si-Mg High-Strength Casting Alloys
> Properties and Selection of Aluminum Alloys
Published: 15 June 2019
Image
Published: 30 November 2018
Image
in Aluminum Foundry Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 16 100-h stress rupture of premium-quality aluminum alloy castings for elevated-temperature service
More
Image
Published: 31 August 2017
Fig. 10 Tensile properties of TWDI castings and the effect of surface quality. (a) Tensile strength-elongation data for regular thickness and thin-wall DI castings. (b) Effect of surface quality on the tensile strength of TWDI castings. (c) Effect of surface roughness on the tensile strength
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
... the finishing steps into the die casting production cell ( Fig. 1 ). Detailed finishing steps may involve finish trimming, detailed deflashing, shot blast cleaning, and quality checks. Automation of the postcasting process is also discussed. Fig. 1 Die casting production cell Die Casting Cycle...
Abstract
High-pressure die casting is a fast method for the net shape manufacturing of parts from nonferrous alloys. This article reviews the automation technologies for the different stages or steps of the process. These steps include liquid metal pouring, injection, solidification, die open, part extraction, die lubrication, insert loading, and die close. Some manual aspects of the operations, together with automation options, are discussed. The article describes finishing steps, such as finish trimming, detailed deflashing, shot blast cleaning, and quality checks. Automation of the postcasting process is also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005254
EISBN: 978-1-62708-187-0
... foam coatings lost foam casting expandable polystyrene lost foam pattern casting quality THE LOST FOAM CASTING PROCESS originated in 1958 when H.F. Shroyer was granted a patent for the cavityless casting method using a polystyrene foam pattern embedded in traditional green sand, which...
Abstract
This article discusses the sequence of operations for producing a foam pattern for casting. It provides information on expandable polystyrene, the most preferred material for manufacturing lost foam patterns. The article then describes the major functions of pattern molding and assembly. The types and application methods of various lost foam coatings are explained. The article also describes the investment of the foam pattern in a sand system. It concludes with a discussion on the advantages of lost foam casting and information on the formation and control of folds.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005351
EISBN: 978-1-62708-187-0
... to escape even the best foam filter. It therefore follows that the choice of filter medium is based at least in part on the requirement for casting quality. For those castings where very small particulates do not contribute to quality issues, screens may be adequate. However, as the quality requirement...
Abstract
In the handling of molten aluminum, it is fairly common to use filters as a part of the melting unit and in the gating and/or riser system. This article describes the methods of in-furnace and in-mold filtration, with an emphasis on the filtration of molten aluminum. It discusses the factors that influence the formation of inclusions. The article describes the three basic methods of mechanically removing or separating inclusions from molten metal. The methods include sedimentation, flotation, and positive filtration. The article provides a discussion on the types of molten-metal filters, including bonded-particle filters, cartridge filters, and ceramic foam filters. It lists the factors that are important in achieving optimum performance of any in-furnace filtering application. The article concludes with information on filtered metal quality and the methods of evaluation.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006581
EISBN: 978-1-62708-210-5
..., and oxides of aluminum and magnesium can affect casting quality. Spinels of aluminum and magnesium oxides form with unprotected exposure at high molten metal temperatures. The potential for inclusions is especially important because many applications involve polishing and/or fine surface finishing. Typical...
Abstract
The Al-Mg moderate-strength casting alloys 511.0, 512.0 and 513.0 are variations of alloy 514.0. Their most important characteristic is corrosion resistance, including exposure to seawater and marine atmospheres. This datasheet provides information on key alloy metallurgy, fabrication characteristics, processing effects on physical and mechanical properties, and applications of these alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003127
EISBN: 978-1-62708-199-3
.../s) Grain size Coarse Fine Very fine on surface Strength Lowest Excellent Highest, usually used in the as-cast condition Fatigue properties Good Good Excellent Wear resistance Good Good Excellent Overall quality Depends on foundry technique Highest quality Tolerance...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. Aluminum alloy castings are routinely produced by pressure-die, permanent-mold, green and dry-sand, investment, and plaster casting. This article describes factors affecting the selection of casting process and the general designation system for aluminum alloys. It provides useful information on mechanical test methods, selection of proper test specimens for accurate test methods, characteristics of premium engineered castings, and advantages of hot isostatic pressing.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... and continuous casting process. It provides information on castability and quality of the casted alloys. The article details the postcasting treatment, including heat treatment, hot isostatic pressing, and coatings. It summarizes the applications of cast cobalt alloys. cast cobalt alloys castability...
Abstract
This article discusses the physical metallurgy of cast cobalt alloys with an emphasis on the crystallography, compositions, phases and microstructure, and properties. Cobalt alloys are cast by several different foundry methods. The article describes the argon-oxygen decarburization and continuous casting process. It provides information on castability and quality of the casted alloys. The article details the postcasting treatment, including heat treatment, hot isostatic pressing, and coatings. It summarizes the applications of cast cobalt alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... aluminum-magnesium alloys require more care in gating, larger risers, and greater control of temperature gradients. Magnesium in aluminum alloys increases oxidation rates. In the molten state, magnesium losses can be significant, and oxides of aluminum and magnesium can affect casting quality. Spinels...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002407
EISBN: 978-1-62708-193-1
... by microstructure, manufacturing processes, test conditions, and casting design in determining the fatigue and fracture properties of aluminum casting alloys. aluminum alloy castings aluminum casting alloys casting design fatigue fracture properties microstructure CASTING QUALITY has steadily...
Abstract
This article reviews the fatigue and fracture properties of aluminum alloy castings, specifically alloys A356 and A357/D357 (all-T6) and alloy A201-T7, from the perspective of both design and manufacturing considerations. In addition, it provides an overview of the roles played by microstructure, manufacturing processes, test conditions, and casting design in determining the fatigue and fracture properties of aluminum casting alloys.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005256
EISBN: 978-1-62708-187-0
... of the investment casting process in terms of molding but with an expendable pattern made from high-quality expanded polystyrene (EPS) as in lost foam (instead of the lost wax pattern of investment casting). The EPS pattern is coated in ceramic slurry and then fired to produce the ceramic mold. The firing process...
Abstract
The Replicast process is developed to overcome the formation of lustrous carbon defects and carbon pickup observed in conventional evaporative pattern casting processes. This article provides a discussion on the pattern production, process capabilities, advantages, and limitations of Replicast process.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006582
EISBN: 978-1-62708-210-5
... of composition on melting and re-melting and ease of pouring dross-free castings. As noted for other Al-Mg casting alloys, magnesium in aluminum alloys increases oxidation rates. In the molten state, magnesium losses can be significant and oxides of aluminum and magnesium can affect casting quality. Despite...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009014
EISBN: 978-1-62708-187-0
.... permanent mold aluminum casting casting simulation sand mold aluminum casting casting design cost drivers structured team approach shape optimization rigging system design DESIGN is the critical first step in the development of cost effective, high quality castings. Designing a successful...
Abstract
This article discusses issues that impact a good casting design. The focus is on the casting design in general, and on sand and permanent mold aluminum casting in particular. The article examines the casting design process from a variety of design and processing perspectives. It summarizes several strategies for improving the traditional casting design process. The article also proposes some possible approaches for implementing these strategies. It presents a vision for the development of comprehensive casting design guidelines along with specific development objectives.
1