Skip Nav Destination
Close Modal
Search Results for
cast nickel-based superalloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 415 Search Results for
cast nickel-based superalloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2005
Fig. 11 Resistance of selected cast nickel-base superalloys to plastic deformation at elevated temperatures. H11 is included for comparison. Source: Ref 15
More
Image
Published: 30 August 2021
Fig. 2 Deformation mechanism map for the cast nickel-base superalloy MAR-M200 with a grain size of 100 μm. Source: Ref 3
More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... applications. It focuses on the solution treatment and age hardening of cast nickel-base superalloys and the heat treatment of cast solid-solution alloys for corrosion-resisting applications. The article also discusses the typical types of atmospheres used in annealing or solution treating: exothermic...
Abstract
Cast nickel-base alloys are used extensively in corrosive-media and high-temperature applications. This article briefly reviews the common types of heat treatments of nickel alloy castings: homogenization, stress relieving, in-process annealing, full annealing, solution annealing, quenching, coating diffusion, and precipitation. It describes the three general strengthening mechanisms, namely, solid-solution hardening, age hardening, and carbide precipitation. The article summarizes the typical heat treatment of the general families of nickel-base castings used in industrial applications. It focuses on the solution treatment and age hardening of cast nickel-base superalloys and the heat treatment of cast solid-solution alloys for corrosion-resisting applications. The article also discusses the typical types of atmospheres used in annealing or solution treating: exothermic, endothermic, dry hydrogen, dry argon, and vacuum.
Image
Published: 01 June 2016
Fig. 3 Rupture strength in 100 h for selected polycrystalline cast nickel-base superalloys versus temperature
More
Image
Published: 01 June 2016
Fig. 8 Effect of aluminum + titanium content on the stress-rupture strength of wrought and cast nickel-base superalloys
More
Image
Published: 01 December 1998
Fig. 14 Effect of aluminum + titanium content on strength of wrought and cast nickel-base superalloys at 870 °C (1600 °F)
More
Image
in Polycrystalline Cast Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 10 Influence of casting variables on intermediate-temperature (760 °C, or 1400 °F, at 690 MPa, or 100 ksi) stress-rupture properties of a cast nickel-base superalloy. Pour temperature and mold temperature affect solidification and thus grain size of the component. Source: Ref 19
More
Image
Published: 01 January 2005
Fig. 5 Macrograph of the cross section of a dual-alloy turbine disk produced by the shear-bond process. The bore is a fine-grain P/M alloy, and the rim is a coarse cast nickel-base superalloy. Courtesy of Ladish Company, Inc.
More
Image
Published: 01 June 2016
Fig. 19 Larson-Miller parametric stress-rupture curves for polycrystalline (PC), columnar grain directionally solidified (CGDS), and single-crystal directionally solidified (SCDS) cast nickel-base superalloys. Larson-Miller parameter = T (C + log t ), where C is the Larson-Miller constant
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... Abstract The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength...
Abstract
The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy components is precisely controlled so that the microstructure, which ultimately determines mechanical properties, remains consistent. Heat treating cast superalloys involves homogenization and solution heat treatments or aging heat treatments.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... on the mechanical properties and chemical composition of nickel, iron, and cobalt-base superalloys in both the cast and wrought forms. chemical composition cobalt-base superalloys environmental factors high-temperature applications iron-base superalloys mechanical properties metal processing...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses, and environmental protection applications. This article discusses the material characteristics, phases, structures, and systems of superalloys. It describes the processing of superalloys, including primary and secondary melting, deformation processing (conversion), powder processing, investment casting, and joining methods. The article also describes the properties, microstructure, and thermal exposure of superalloys. It further discusses the effects of environmental factors on superalloys, including oxidation and hot corrosion. Protective coatings are also discussed. The article provides information on the mechanical properties and chemical composition of nickel, iron, and cobalt-base superalloys in both the cast and wrought forms.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004003
EISBN: 978-1-62708-185-6
...-metallurgy (P/M) nickel-base superalloys. For example, a moderately coarse grain size can be obtained by a judicious choice of supersolvus deformation and/or heat treatment methods. Cast-and-Wrought Nickel-Base Superalloys Cast-and-wrought nickel-base superalloys are often converted to fine-grain...
Abstract
The thermomechanical processing (TMP) of conventional and advanced nickel and titanium-base alloys is aimed at altering or enhancing one or more metallurgical features within the material and component. This article presents a number of examples of the TMP of nickel-base superalloys and titanium alloys. The TMP techniques include retained-strain processing, dual-microstructure processing, and dual-alloy processing. The article also describes the TMP of alpha-beta titanium alloys, including fine-grain processing, hybrid-structure processing, dual-microstructure processing, and dual-alloy processing. It concludes with a discussion on computer simulation of advanced TMP processes.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005886
EISBN: 978-1-62708-167-2
... systems. Nickel-Base Superalloys Nickel-base superalloys are alloys that are predominantly nickel with lesser amounts of other alloying constituents. These materials are categorized into a series of application and processing-based groups, including: cast and wrought (C&W); powder metallurgy (P...
Abstract
This article discusses special considerations relative to induction heating of stainless steels and nickel-base superalloys. It focuses on the various industrial and high-temperature applications of induction heating to stainless steel and superalloy components, namely, primary melting processes, preheating for primary and secondary forming processes, heat treatments, brazing, and thermal processing for fusion welds. The article also provides information on computational modeling of induction heating processes for super alloys and stainless steels.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006582
EISBN: 978-1-62708-290-7
... by using casting, forging, or welding and joining processes. The manufacturing methodology used in the fabrication of nickel-base superalloy components is based on geometric needs and necessary mechanical properties to enable the component to perform in service for the required lifetime. Additive...
Abstract
This article covers the current state of materials development of nickel-base superalloys for additive manufacturing (AM) processes and the associated challenges. The discussion focuses on nickel-base superalloy fusion AM processes, providing information on typically encountered cracking mechanisms in AM nickel-base superalloys, such as solid-solution-strengthened nickel-base superalloys and precipitate-strengthened nickel-base superalloys. The mechanisms include solidification cracking, strain-age cracking, liquation cracking, and ductility-dip cracking. The article also provides a short discussion on binder jet AM and powder recyclability.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003999
EISBN: 978-1-62708-185-6
... steels, advanced cast nickel-base superalloys, or refractory alloys such as TZM-molybdenum (titanium/zirconium/molybdenum). Conventional tool steels such as H-13 can be used for forging lower alloy content nickel materials where die chilling is less critical. This is acceptable because the tools...
Abstract
Forging of nickel-base alloys results in geometries that reduce the amount of machining to obtain final component shapes and involves deformation processing to refine the grain structure of components or mill products. This article discusses the heating practice, die materials, and lubricants used in nickel-base alloys forging. It describes two major forging processing categories for nickel-base alloys: primary working and secondary working categories. Primary working involves the deformation processing and conversion of cast ingot or similar bulk material into a controlled microstructure mill product, such as billets or bars, and secondary working refers to further forging of mill product into final component configurations.
Image
in Special Metallurgical Welding Considerations for Nickel and Cobalt Alloys and Superalloys
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 3 Stress-rupture strength of mechanically alloyed dispersion-strengthened nickel superalloy relative to conventional dispersion-strengthened nickel superalloys and cast nickel-base alloys
More
Image
Published: 01 December 1998
Fig. 2 Typical operating microstructures of representative superalloys. (a) Cast cobalt-base alloy. 250×. (b) Cast nickel-base alloy. 100×. (c) Wrought (left, 3300×) and cast (right, 5000×) nickel-base alloys. (d) Two wrought iron-nickel-base alloys (left, 17,000×; right, 3300×). Note script
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003737
EISBN: 978-1-62708-177-1
... Abstract This article discusses the specimen preparation of three types of cast and wrought heat-resistant alloys: iron-base, nickel-base, and cobalt-base. Specimen preparation involves sectioning, mounting, grinding, polishing, and etching. The article illustrates the microstructural...
Abstract
This article discusses the specimen preparation of three types of cast and wrought heat-resistant alloys: iron-base, nickel-base, and cobalt-base. Specimen preparation involves sectioning, mounting, grinding, polishing, and etching. The article illustrates the microstructural constituents of cast and wrought heat-resistant alloys. It describes the identification of ferrite by magnetic etching. The transmission electron microscopy examination of the fine strengthening phases in wrought alloys and bulk extraction in heat-resistant alloys are included. The article also reviews the gamma prime phase, gamma double prime phase, eta phase, laves phase, sigma phase, mu phase, and chi phase in wrought heat-resistant alloys.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... in turbine rotor blade cooling For the past 28 years, high-pressure turbine blades and vanes have been made from cast nickel-base superalloys. The higher-strength alloys are hardened by a combination of approximately 60 vol% γ′ [Ni 3 (Al,Ti)] precipitated in a γ matrix, with solid-solution...
Abstract
Directionally solidified (DS) and single-crystal (SX) superalloys and process technology are contributing to significant advances in turbine engine efficiency and durability. These gains are expected to arise from the development of higher creep strength and improved oxidation-resistant SX alloy compositions as well as from the development of SX casting and fabrication technology to utilize advanced transpiration-cooling schemes. This article provides a detailed discussion on the chemistry and castability of first- and second-generation DS and SX superalloys. It summarizes the chemistry modifications applied to MAR-M 247 to develop CMSX-2 with respect to function and objectives. The article also lists the nominal compositions of first- and second-generation DS and SX superalloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
... that it will no longer substitute for chromium in M 23 C 6 . Molybdenum, although used extensively in nickel-base superalloys, is used only sparingly in cobalt-base superalloys. In cobalt-base superalloys, tungsten is more effective and less detrimental than molybdenum. However, corrosion-resistant grades of cobalt...
Abstract
Cobalt is used as an alloying element in alloys for various applications. This article provides a detailed account of the metallurgy of cobalt-base alloys. It focuses on the compositions, properties, and applications of cobalt-base alloys, which include wear-resistant cobalt alloys, heat-resistant cobalt alloys, and cobalt-base corrosion-resistant alloys. The article also describes the heat treatments such as annealing and aging, for these alloys.
1