Skip Nav Destination
Close Modal
Search Results for
cast ingots
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 576 Search Results for
cast ingots
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005295
EISBN: 978-1-62708-187-0
... Abstract When a heat of steel is melted and refined, it is necessary to solidify it into useful forms for further processing or final use. Ingot casting remains the preferred method for certain specialty, tool, forging, and remelted steels. This article discusses the methods, equipment...
Abstract
When a heat of steel is melted and refined, it is necessary to solidify it into useful forms for further processing or final use. Ingot casting remains the preferred method for certain specialty, tool, forging, and remelted steels. This article discusses the methods, equipment, and theory for pouring, solidifying, and stripping steel ingots. It describes two basic types of pouring methods, top pouring and bottom pouring, and provides information on equipment such as hot tops, ingot molds, and stools. The design of the ingot is dictated by the application and type of steel involved. The article concludes with information on the applications of solidification simulation.
Image
Published: 01 January 1986
Image
Published: 01 December 2004
Fig. 45 Phosphor bronze strip rolled from a static cast ingot, showing gross tin sweat on the top surface. This illustrates how segregation caused by exudation persists in the fabricated structure. Etchant not reported. 300×. Source: Ref 7
More
Image
in Metallography and Microstructures of Zirconium, Hafnium, and Their Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 1 Zircaloy 4 as-cast ingot. (a) Outside edge. (b) Center section. As-attack polished, heat tinted, and viewed with polarized light illumination. These micrographs show the effect of the cooling rate from the inside to the outside locations of the ingot. The outer surface shows a finer
More
Image
in Metallography and Microstructures of Zirconium, Hafnium, and Their Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 3 Zircaloy 4 as-cast ingot. (a) Center section. Attack polished, heat tinted, etchant procedure No. 6, and viewed with differential interference contrast illumination. (b) Midthickness. Attack polished, heat tinted, and viewed with differential interference contrast illumination
More
Image
Published: 01 December 2004
Image
Published: 01 December 2004
Fig. 47 Zircaloy 4 as-cast ingot. Use of attack polishing, heat tinting (425 °C, or 800 °F), and differential interference contrast illumination reveals the basic crystal structure and the iron-chromium second phase. 200×. (P.E. Danielson)
More
Image
Published: 01 January 2005
Fig. 8 Sidepressed bars of a high-nitrogen stainless steel cut from a cast ingot. (a) Bar forged round-to-round at 1150 °C (2100 °F), which developed center-burst. (b) Bar successfully forged round-to-square at 1125 °C (2060 °F). Source: Ref 11
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005286
EISBN: 978-1-62708-187-0
... Abstract Ingot casting is the vital conduit between molten metal provided by primary production and recycling and the manufacture of aluminum and aluminum alloy products. A number of ingot casting processes have been developed to ensure the soundness, integrity, and homogeneity required...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling and the manufacture of aluminum and aluminum alloy products. A number of ingot casting processes have been developed to ensure the soundness, integrity, and homogeneity required by downstream manufacturing processes. This article starts with a review of the different forms of ingot and the molten-metal processing techniques involved in ingot casting. It then describes the open-mold casting and direct chill (DC) ingot casting processes. The process variations and solidification in the DC process are summarized. The article explains continuous processes, namely, twin-roll strip casting, slab casting, and wheel-belt processes. It concludes with information on postsolidification processes, including stress relief and scalping, and a discussion of safety practices for ingot casting.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006485
EISBN: 978-1-62708-207-5
... Abstract Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot...
Abstract
Ingot casting is the vital conduit between molten metal provided by primary production and recycling, and the manufacture of aluminum and aluminum alloy products. This article discusses various ingot forms, such as remelt ingot, billets, ingots for rolling, fabricating ingot, and particle ingot and powder. It describes the molten metal processing and ingot casting process in terms of open-mold casting and direct chill process. The article examines the continuous processes that provide commercial alternatives to conventional ingot casting. It reviews the postsolidification processes in terms of stress relief, homogenization, and scalping. The article concludes with a discussion on safety limited to ingot casting.
Image
in Classification and Designation of Carbon and Low-Alloy Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 2 Eight typical conditions of commercial steel ingots, cast in identical bottle-top molds, in relation to the degree of suppression of gas evolution. The dotted line indicates the height to which the steel originally was poured in each ingot mold. Depending on the carbon and, more
More
Image
Published: 01 December 2008
Fig. 3 As-cast Al-7Si ingots showing the effects of grain refinement. (a) No grain refiner. (b) Grain refined. Both etched using Poulton's etch; both 2×. Courtesy of W.G. Lidman, KB Alloys, Inc.
More
Image
Published: 01 December 1998
Fig. 19 Eight typical conditions of commercial steel ingots, cast in identical bottle-top molds, in relation to the degree of suppression of gas evolution. The dotted line indicates the height to which the steel originally was poured in each ingot mold. Depending on the carbon and, more
More
Image
Published: 01 December 1998
Fig. 3 As-cast Al-7Si ingots showing the effects of grain refinement. (a) No grain refiner. (b) Grain refined. Both etched using Poulton's etch; both 2×
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003999
EISBN: 978-1-62708-185-6
..., and lubricants used in nickel-base alloys forging. It describes two major forging processing categories for nickel-base alloys: primary working and secondary working categories. Primary working involves the deformation processing and conversion of cast ingot or similar bulk material into a controlled...
Abstract
Forging of nickel-base alloys results in geometries that reduce the amount of machining to obtain final component shapes and involves deformation processing to refine the grain structure of components or mill products. This article discusses the heating practice, die materials, and lubricants used in nickel-base alloys forging. It describes two major forging processing categories for nickel-base alloys: primary working and secondary working categories. Primary working involves the deformation processing and conversion of cast ingot or similar bulk material into a controlled microstructure mill product, such as billets or bars, and secondary working refers to further forging of mill product into final component configurations.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005408
EISBN: 978-1-62708-196-2
... Abstract This article explores the potential of through-process simulations of the development of microstructure, texture, and resulting properties during the thermomechanical processing of Al-Mn-Mg alloys, starting from the as-cast ingot to final-gage sheet. It provides an introduction...
Abstract
This article explores the potential of through-process simulations of the development of microstructure, texture, and resulting properties during the thermomechanical processing of Al-Mn-Mg alloys, starting from the as-cast ingot to final-gage sheet. It provides an introduction of the thermomechanical production of aluminum sheet and, in particular, highlights the main effects governing the evolution of microstructure and texture. The simulation tools used to model the evolution of microchemistry, microstructure, and texture upon deformation and recrystallization of aluminum alloys are described. The article discusses the recrystallization behavior of alloy AA 3104 during the interstand times in between two consecutive hot rolling passes with the help of combined microstructure models.
Image
Published: 01 December 2004
Fig. 35 Bleed bands normal to the casting direction on the surface of a direct-chill semicontinuous cast ingot of alloy 3003. Unpolished. One-fourth actual size. Source: Ref 25
More
Image
Published: 01 January 1987
Fig. 1083 Tensile-overload fracture in a specimen of a superplastic eutectic alloy containing 67% Al and 33% Cu. The material was cast, and the as-cast ingot was extruded at 430 °C (805 °F). Testing was performed at 0.025 mm/s (0.001 in./s) and at a controlled temperature of 450 °C (840 °F
More
Image
Published: 01 December 2004
Fig. 31 Variation in copper concentration across a 600 mm (24 in.) thick direct-chill semicontinuous cast ingot of 2124 alloy. Source: Ref 4
More
Image
Published: 01 January 2005
Fig. 4 Dependence of recrystallization on rolling temperature and deformation for high-nitrogen stainless steel wedge-test specimens cut from cast ingot. Source: Ref 11
More
1