1-20 of 381 Search Results for

cast cobalt-chromium-molybdenum alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2006
Fig. 34 Polarization curve for cast cobalt-chromium-molybdenum alloy shown in Fig. 25(a) . The alloy was tested at a scan rate of about 1.5 mV/s (1.8 V/h) in aerated physiologic phosphate buffered saline (PBS) that was heated and held at a temperature of 37±1 °C (99±2 °F) with a pH of 7.4 More
Image
Published: 01 January 2006
Fig. 24 SEM micrographs showing the microstructure of an ASTM F 75 cast cobalt-chromium-molybdenum alloy that was subjected to a homogenizing anneal. (a) SEM in the secondary electron mode showing both intragranular and intergranular carbide distribution. 350×. (b) SEM in the backscattered More
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005669
EISBN: 978-1-62708-198-6
... alloys. biomedical applications cast cobalt alloys cast cobalt-chromium-molybdenum alloys chemical composition cobalt-chromium alloy implants coring corrosion properties crystal structure diffusionless phase transformation lattice defects mechanical properties metal powder processing...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004209
EISBN: 978-1-62708-184-9
..., indium, and grain refiners. The nickel-base alloys are alloyed with chromium, iron, molybdenum, and other elements. Alloys for porcelain fused to alloy restorations are gold-, palladium-, nickel-, or cobalt-base compositions. The gold-base alloys are divided into gold-platinum-palladium, gold...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006267
EISBN: 978-1-62708-169-6
... later identified tungsten and molybdenum as powerful strengthening agents within the cobalt-chromium system. These developments led to various cobalt-base alloys for corrosion and high-temperature applications in the 1930s and early 1940s. Of the corrosion-resistant alloys, a Co-Cr-Mo alloy...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... of the type shown in Fig. 2(s) , which had been in the body for 24 years, showed no signs of corrosion. This nail was produced from a low-carbon remelted type 316L stainless steel. Example 2: Retrieved Bone Screw Made From Cobalt-Chromium-Molybdenum Alloy with Casting Defects Portions of the threads...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005335
EISBN: 978-1-62708-187-0
... alloys include ASTM F-75 and Haynes Ultimet. Corrosion-resistant cast cobalt alloys are characterized by relatively high chromium contents and lower carbon contents (compared to wear- and temperature-resistant grades). Chromium provides corrosion resistance in oxidizing acids, while molybdenum...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003771
EISBN: 978-1-62708-177-1
...-solution alloying (e.g., molybdenum, tungsten, tantalum, and niobium) in combination with carbon to promote carbide precipitation. Compared to the wrought alloys, cast cobalt-base superalloys are characterized by higher contents of high-melting metals (chromium, tungsten, tantalum, titanium, and zirconium...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001073
EISBN: 978-1-62708-162-7
... MP35N, Multiphase alloy bal 20 … 10 … … 35 … … … Haynes alloy 1233 bal 25.5 2 5 0.08 (max) 3 9 … … 0.1N (max) (a) bal, balance Historically, many of the commercial cobalt-base alloys are derived from the cobalt-chromium-tungsten and cobalt-chromium-molybdenum...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
... in the Section “Carbon and Alloy Steels” in this Handbook. Wear-Resistant Alloys The cobalt-base wear alloys used currently have changed little since the development of cobalt-chromium-tungsten and cobalt-chromium-molybdenum alloys (Stellites) by Elwood Haynes at the turn of the century. The most...
Image
Published: 01 January 2002
through screw and nut. The nut shows as-cast structures of cobalt-chromium-molybdenum alloy (type ASTM F75). 160×. (d) Longitudinal section of the other broken pin in the cold-worked condition with fewer grain-boundary precipitates, lines of primary inclusions, and a small surface crack (there were more More
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002123
EISBN: 978-1-62708-188-7
... Abstract Cast cobalt alloys were developed to bridge the gap between high-speed steels and carbides. Although comparable in room-temperature hardness to high-speed steel tools, cast cobalt alloy tools retain their hardness to a much higher temperature and can be used at higher cutting speeds...
Image
Published: 01 December 2008
Fig. 6 Biomedical applications for investment castings. (a) Whiteside hip-femoral prosthesis. (b) Whiteside II-C knee-tibial base. (c) London elbow-humeral prosthesis. All cast in ASTM F75 cobalt-chromium-molybdenum alloy; all courtesy of Dow Corning Wright More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006390
EISBN: 978-1-62708-192-4
... is due to manufacturing route (cast versus HIP), variations in overall alloying element content, and indentation size effects due to the load and shape of indenter. Fig. 3 Influence of sum of relative carbon and tungsten (or molybdenum) content on the hardness of some cobalt-base alloys. HIPed...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003817
EISBN: 978-1-62708-183-2
... resistance of these alloys is enhanced by the tungsten (and, in some cases, molybdenum) additions. However, in the high-carbon cobalt alloys, significant amounts of chromium and tungsten partition to the carbide precipitates, thus reducing their effective levels with regard to corrosion resistance...
Image
Published: 01 January 2006
Fig. 25 SEM micrographs in the backscattered electron mode showing the varied microstructures of five different types of cobalt-chromium-molybdenum alloys at a magnification of 1000×. The samples were polished to a 0.05 μm (0.002 mils) finish and electrolytically etched in 2% HCl at 3.5 V More
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
... hardfacing materials are normally classified as steels or low-alloy ferrous materials, high-chromium white irons or high-alloy ferrous materials, carbides, nickel-base alloys, or cobalt-base alloys. A few copper-base alloys are sometimes used for hardfacing applications, but for the most part, hardfacing...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001430
EISBN: 978-1-62708-173-3
... much like nickel in terms of active-passive behavior in aqueous corrosion systems. Chromium additions reportedly are more effective in imparting passivity to cobalt than to nickel ( Ref 1 ). Cobalt-chromium CR alloys typically contain sufficient additions of nickel or iron, which serve to stabilize...
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002121
EISBN: 978-1-62708-188-7
... of their ability to machine materials at high cutting speeds. They are complex iron-base alloys of carbon, chromium, vanadium, molybdenum, or tungsten, or combinations thereof, and in some cases substantial amounts of cobalt. The carbon and alloy contents are balanced at levels to give high attainable hardening...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006364
EISBN: 978-1-62708-192-4
... , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 In technical alloys, such as white cast iron, the resulting chromium carbides also possess a large amount of elements such as iron, molybdenum, or tungsten, so that a (Cr,Fe,Mo,W) 7 C 3 mixed carbide is formed instead...