1-20 of 679

Search Results for cast aluminum-tin alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006412
EISBN: 978-1-62708-192-4
..., and magnesium. Starting forms for bearing fabrication include cast tubes as well as rolled plate and strip, which can be press formed into half-round shapes. As is the case with solid bronze bearings, relatively thick bearing walls are employed in solid aluminum alloy bearings. The tin in these alloys...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
... difficult to cast as well as being prone to cracking, gas porosity, and internal cavities. The casting characteristics and mechanical strength of copper are improved by the addition of alloying elements such as zinc, tin, aluminum, chromium, silver, beryllium, silicon, and nickel. However, in applications...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003167
EISBN: 978-1-62708-199-3
... and composition of the following types of bearing materials: tin-base alloys, lead-base alloys, copper-base alloys, and aluminum-base alloys. It also briefly discusses the following types of bearing materials: zinc-base alloys, silver-base alloys, gray cast irons, cemented carbides, and nonmetallic bearing...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003134
EISBN: 978-1-62708-199-3
...). Permanent mold casting is best suited for tin, silicon, aluminum, and manganese bronzes, and yellow brasses. Die casting is well suited for yellow brasses, but increasing amounts of permanent mold alloys are also being die cast. Size is a definite limitation for both methods, although large slabs weighing...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001068
EISBN: 978-1-62708-162-7
... backs, cast on rolled strip, made into sintered powder metallurgy shapes, or pressed and sintered onto a backing material. Three groups of alloys are used for bearing and wear-resistant applications: phosphor bronzes (Cu-Sn); copper-tin-lead (low-zinc) alloys; and manganese, aluminum, and silicon...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003145
EISBN: 978-1-62708-199-3
... tin-base or lead-base babbitts. Bearing alloys must maintain a balance between softness and strength. Aluminum-tin bearing alloys represent an excellent compromise between the requirements for high fatigue strength and the need for good surface properties such as softness, seizure resistance...
Book Chapter

By William B. Hampshire
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001076
EISBN: 978-1-62708-162-7
... Microstructures Other Tin-Base Alloys Alloys for Organ Pipes Tin-Base Casting Alloys Type Metals White Metal (92Sn-8Sb) Lead-Base Bearing Alloys Bearing Alloys Compositions Intermediate Lead-Tin Babbitt Alloys Aluminum-Tin Bearing Alloys Low-Tin Aluminum-Base Alloys Properties...
Book Chapter

Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005444
EISBN: 978-1-62708-196-2
... alloys; tin and tin alloys; titanium and titanium alloys; zinc and zinc alloys; and pure metals. thermal conductivity aluminum aluminum alloys copper copper alloys iron iron alloys lead lead alloys magnesium magnesium alloys nickel nickel alloys tin tin alloys titanium titanium...
Book Chapter

By John C. Bittence
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003222
EISBN: 978-1-62708-199-3
... identification of metals and alloys by magnetic response Table 4 Preliminary identification of metals and alloys by magnetic response Response Metal or alloy Strongly magnetic Cast irons, steels, 400 stainless steels, nickel, cobalt Slightly magnetic Monel (not K or S Monel), aluminum bronze...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003773
EISBN: 978-1-62708-177-1
...-lead alloy 0.5% HF Aluminum alloy clad to steel Aluminum-silicon alloy clad to steel High-tin aluminum alloy clad with unalloyed aluminum Lead-tin-copper overlay on aluminum alloy liner Low-tin aluminum alloy clad to steel Trimetal bearing: lead-tin-copper electroplated overlay, copper...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005306
EISBN: 978-1-62708-187-0
... lead alloys nickel alloys non-ferrous alloys titanium alloys copper drossing softening desilvering CASTING OF NONFERROUS ALLOYS on a tonnage basis is dominated by aluminum, which is cast by ingot and continuous processes for primary mills and by all foundry (shape casting) processes...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
... Abstract This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin...
Book Chapter

By Sabit Ali
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006281
EISBN: 978-1-62708-169-6
... Abstract Bronzes generally are used to describe many different copper-base alloys in which the major alloying addition is neither zinc nor nickel. They are generally classified by their major alloying elements, for example, tin bronzes with phosphorus used as a deoxidizer, aluminum bronzes...
Book Chapter

Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006275
EISBN: 978-1-62708-169-6
... on the mechanical properties of zinc alloy and zinc-aluminum alloy castings. Effect of temperature on the mechanical properties of conventional die casting zinc alloys Table 1 Effect of temperature on the mechanical properties of conventional die casting zinc alloys Alloy designation Temperature...
Book Chapter

By David V. Neff
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001118
EISBN: 978-1-62708-162-7
... on the recycling of nonferrous alloys, namely, aluminum, copper, magnesium, tin, lead, zinc, and titanium, providing details on the sources, consumption and classification of scrap, and the technological trends and developments in recycling. aluminum recycling copper recycling lead recycling magnesium...
Book Chapter

By A. Kearney, Elwin L. Rooy
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001061
EISBN: 978-1-62708-162-7
...-copper, aluminum-copper-silicon, aluminum-silicon, aluminum-magnesium, aluminum-zinc-magnesium, and aluminum-tin. The article also describes the main casting processes for aluminum alloys, which include die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting...
Book Chapter

Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
... casting is best suited for tin, silicon, aluminum and manganese bronzes, and yellow brasses. Dies casting is well suited for yellow brasses, but increasing amounts of permanent mold alloys are also being die cast. Size is a definite limitation for both methods, although large slabs weighing as much...
Book Chapter

Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005443
EISBN: 978-1-62708-196-2
... Abstract This article presents a table that lists the linear thermal expansion of selected metals and alloys. These include aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, and zinc and their alloys. Thermal expansion is presented for specific temperature ranges. linear...
Book Chapter

By Jude Mary Runge, Christoph Werner, S. Lampman
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006491
EISBN: 978-1-62708-207-5
...% sodium chloride solution Metal Potential, mV (a) Magnesium –850 Zinc –350 Cadmium –20 to 0 Aluminum (pure) 0 Aluminum-magnesium alloys +100 Aluminum-copper alloys +150 Iron, low-carbon steel +50 to 150 Tin +300 Brass +500 Nickel +500 Copper +550...
Book Chapter

Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006551
EISBN: 978-1-62708-210-5
.... Aluminum-Tin Bearing Alloys Successful commercial use of aluminum alloys in plain bearings dates back to approximately 1940, when low-tin aluminum alloy castings were introduced to replace solid bronze bearings for heavy machinery. Aluminum-tin alloys 850.0, 851.0, 852.0, and 853.0 are specialized...