Skip Nav Destination
Close Modal
Search Results for
carbide powders
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 853 Search Results for
carbide powders
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006052
EISBN: 978-1-62708-175-7
... Abstract This article discusses the methods and procedures used to extract, purify, and synthesize tungsten carbide powder, metal, and other refractory carbide/nitride powders used in hard metal production. Selection of powders, additives, equipment, and processes for making ready-to-press hard...
Abstract
This article discusses the methods and procedures used to extract, purify, and synthesize tungsten carbide powder, metal, and other refractory carbide/nitride powders used in hard metal production. Selection of powders, additives, equipment, and processes for making ready-to-press hard metal powders is also discussed. The article also provides information on the emerging technologies for tungsten carbide synthesis and binders in hard metal production, such as cobalt, iron, and nickel.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006053
EISBN: 978-1-62708-175-7
... Abstract Consolidation and shaping of grade powders is carried out using several methods, depending on the size, complexity, shape, and quantity of parts required. This article details the powder consolidation methods of carbide powders: uniaxial pressing, cold isostatic pressing, extrusion...
Abstract
Consolidation and shaping of grade powders is carried out using several methods, depending on the size, complexity, shape, and quantity of parts required. This article details the powder consolidation methods of carbide powders: uniaxial pressing, cold isostatic pressing, extrusion, green machining, and injection molding.
Image
Published: 31 December 2017
Image
Published: 31 December 2017
Fig. 7 Scanning electron micrograph showing a typical tungsten carbide powder, sized for plasma transferred arc welding deposition. Original magnification: 100×
More
Image
Published: 30 September 2015
Fig. 4 Electron micrograph of typical cast carbide (WC-W 2 C) powder used in manufacturing infiltrated fixed-cutter bit heads
More
Image
Published: 01 January 1990
Fig. 1 Powder metallurgy production methods for cermet and cemented-carbide products Production method Products 1. Presintering Cemented-carbide parts and cermets 2. Vacuum sintering Steel-bonded carbides (standard pieces) and cermets 3. Canning Steel-bonded carbides
More
Image
Published: 30 September 2015
Fig. 3 Infiltration process for carbide-infiltrated bit head. Key components include graphite mold (16, 22), tungsten carbide powder (28), tungsten powder (30), steel blank (24), and sand components (18).
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006099
EISBN: 978-1-62708-175-7
... to the skeleton as well. An example is the infiltration process used in manufacturing tungsten carbide components for use in oil and gas applications. Often, the basic tungsten carbide powder skeleton is modified with the addition of nickel powder to improve wettability and final infiltration-phase physical...
Abstract
This article provides information on the infiltration mechanism of carbide structures. It reviews the basic techniques used for metal infiltration, including dip infiltration, contact filtration, gravity feed infiltration, and external-pressure infiltration. The article highlights various applications of contact infiltration in oil, gas, and blast-hole drilling such as fixed-cutter drill bits and diamond-impregnated coring bits. It also discusses the applications of infiltrated carbide material in erosion-resistant cladding.
Image
in Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 6 Fracture morphology of vanadium carbide coatings on W1 formed by high-temperature borax baths with the addition of 20 wt% V pentaoxide flakes and 5 wt% boron carbide powders. Coating temperature: 1000 °C (1830 °F); time: 4 h
More
Image
in Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 3 Optical cross-sectional views of vanadium carbide coatings formed on W1 by high-temperature borax baths with the addition of 20 wt% V pentaoxide flakes and 5 wt% boron carbide powders at various temperatures and times. (a) 900 °C (1650 °F), 3 min. (b) 900 °C, 30 min. (c) 1000 °C (1830
More
Image
in Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 20 Example of effective height change for vanadium carbide coating in continuous run of a borax bath with additions of vanadium pentaoxide flakes and boron carbide powders. Operating temperature: 1025 °C (1875 °F); pot size: 400 mm (16 in.) diameter and 650 mm (26 in.) deep
More
Image
in Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 19 Example of bath agitation effect on effective heights in a borax bath with additions of vanadium pentaoxide flakes and boron carbide powders
More
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
..., ferro-titanium, ferro-titanium-boron, ferro-vanadium, and ferro-tungsten. In addition, carbide powders such as boron carbide and chromium carbide are also used for this application. Further, a number of mineral and flux powders are used in the manufacture of stick electrodes and flux-cored wires...
Abstract
Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications and the specific powder properties and characteristics they require.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003437
EISBN: 978-1-62708-195-5
... of spherical equivalent diameter as a function of maximum particle dimension for an irregular particle with relative dimensions of 2.5 to 2 to 1 Commercially available silicon carbide, alumina, and boron carbide powders are measured by techniques defined in the British Abrasive Federation standard FEPA...
Abstract
This article describes the characterization techniques, mechanical tests, and nondestructive evaluation methods that are commonly used for metal-matrix composites. It also tabulates typical methods of particle size and size distribution measurement, as well as mechanical test specifications for aluminum-matrix composites.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002156
EISBN: 978-1-62708-188-7
... the size and type of abrasive powder used. Aluminum oxide and silicon carbide powders are used for heavy cleaning, cutting, and deburring. Magnesium carbonate is recommended for use in light cleaning and etching, while sodium bicarbonate is used for fine cleaning and the cutting of soft materials...
Abstract
Abrasive jet machining (AJM) is a process that removes material from a workpiece through the use of abrasive particles entrained in a high-velocity gas stream. This article discusses the operation of principal components, advantages, and disadvantages of the AJM system. It describes several factors that determine the characteristics of the AJM process. These include flow rates of the jet stream, type and size of abrasive powders, and distance between the workpiece and nozzle.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006391
EISBN: 978-1-62708-192-4
...-base hardfacing. Original magnification: 200× Tungsten Carbide-Based MMC overlays Tungsten Carbide-Based MMC overlays ( Fig. 5 ) are formed using either a powder or wire consumable, the choice of which is determined by the welding process employed. Laser and PTAW processes tend to use powder...
Abstract
Hardfacing refers to the deposition of a specially selected material onto a component in order to reduce wear in service as a preventative measure or return a worn component to its original dimensions as a repair procedure. This article provides information on various hardfacing materials, namely, iron-base overlays, chromium carbide-based overlays, nickel- and cobalt-base alloys, and tungsten carbide-based metal-matrix composite overlays. It discusses the types of hardfacing processes, such as arc welding processes, and laser cladded, oxyacetylene brazing and vacuum brazing processes. The arc welding processes include shielding metal arc welding, gas metal arc welding/flux cored arc welding, gas tungsten arc welding, submerged arc welding, and plasma transferred arc welding. The article also reviews various factors influencing the selection of the appropriate hardfacing for specific applications.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005773
EISBN: 978-1-62708-165-8
... of x-ray intensity of vanadium, carbon, iron, and other elements in vanadium carbide coatings formed on W1 by high-temperature fluidized beds with the addition of 10 wt% ferrovanadium powders. Coating temperature: 1000 °C (1830 °F); time: 2 h Fig. 2 In-depth variation of x-ray intensity...
Abstract
The thermoreactive deposition and diffusion process is a heat-treatment-based method to form coatings with compacted layers of carbides, nitrides, or carbonitrides, onto some carbon/nitrogen-containing materials, including steels. The amount of active carbide forming elements/nitride forming elements, coating temperatures and time, and thickness of substrates influence the growth rate of coatings. This article lists carbide and nitride coatings that are formed on carbon/nitrogen-containing metallic materials, and describes the coating process and mechanism of coating reagents. It details the growth process and nucleation process of carbide and nitride coatings formed on the metal surface. The article discusses the advantages, disadvantages, and characteristics of the various coating processes, including high-temperature salt bath carbide coating, high-temperature fluidized-bed carbide coating, and low-temperature salt bath nitride coating.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002124
EISBN: 978-1-62708-188-7
... in the article “Cermets” in this Volume. Extensive reviews of the scientific and industrial aspects of cemented carbides are available in Ref 5 , 6 , 7 , and 8 . Manufacture of Cemented Carbides Cemented carbides are manufactured by a powder metallurgy process consisting of a sequence of steps...
Abstract
This article discusses the manufacturing steps and compositions of cemented carbides, as well as their microstructure, classifications, applications, and physical and mechanical properties. It provides information on new tool geometries, tailored substrates, and the application of thin and hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. The article also discusses tool wear mechanisms and the methods available for holding the carbide tool.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
.... Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets. Almost 50% of the total production of cemented carbides is used for nonmetal cutting applications. Their properties also make them appropriate materials for structural components, including plungers, boring bars, powder compacting dies and punches, high-pressure dies and punches, and pulverizing hammers. This article discusses the manufacture, microstructure, composition, classifications, and physical and mechanical properties of cemented carbides, as well as their machining and nonmachining applications. It examines the relationship between the workpiece material, cutting tool and operational parameters, and provides suggestions to simplify the choice of cutting tool for a given machining application. It also examines new tool geometries, tailored substrates, and the application of thin, hard coatings to cemented carbides by chemical vapor deposition and physical vapor deposition. It discusses the tool wear mechanisms and the methods available for holding the carbide tool. The article is limited to tungsten carbide cobalt-base materials.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006418
EISBN: 978-1-62708-192-4
... Abstract Cemented carbides, best known for their superior wear resistance, have a range of industrial uses more diverse than that of any other powder metallurgy product including metalworking and mining tools and wear-resistant components. This article discusses raw materials and manufacturing...
Abstract
Cemented carbides, best known for their superior wear resistance, have a range of industrial uses more diverse than that of any other powder metallurgy product including metalworking and mining tools and wear-resistant components. This article discusses raw materials and manufacturing methods used in the production of cemented carbides, the physical and mechanical properties of carbides, and wear mechanisms encountered in service. Emphasis is placed on tungsten carbide-cobalt (WC-Co) or tungsten carbide-nickel (WC-Ni) materials as used in nonmachining applications. Nominal composition and properties of representative cemented carbide grades and their applications are listed in a table.
1