Skip Nav Destination
Close Modal
Search Results for
cancellous-structured titanium
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 70 Search Results for
cancellous-structured titanium
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 2012
Fig. 3 High-powered micro- and nanostructure or cancellous-structured titanium. Courtesy of Zimmer Inc., Warsaw, IN
More
Image
Published: 01 June 2012
Fig. 4 Cluster-hole acetabular component with a cancellous-structured titanium coating. Courtesy of Zimmer Inc., Warsaw, IN
More
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005656
EISBN: 978-1-62708-198-6
... porous metals/coatings having an open-cell structure, high porosity, and a microstructure resembling that of the cancellous bone. The traditional porous metal/coating includes fiber-metal mesh, cobalt-chromium (CoCr) beads, cancellous-structured titanium, and plasma spray. The article discusses other...
Abstract
Porous coatings are used in the field of joint replacement, particularly in cementless total hip/knee arthroplasty. This article reviews the offerings and biomaterial properties in orthopedic surgery for the contemporary class of highly porous metals. It describes the traditional porous metals/coatings having an open-cell structure, high porosity, and a microstructure resembling that of the cancellous bone. The traditional porous metal/coating includes fiber-metal mesh, cobalt-chromium (CoCr) beads, cancellous-structured titanium, and plasma spray. The article discusses other porous metals/coatings that have been developed due to the limitations of traditional porous metals for numerous open-cell-structured metals, such as titanium-base foams and trabecular metals.
Image
Published: 01 June 2012
Fig. 5 The undersurface of the asymmetric cementless Natural Knee tibial component is coated with cancellous-structured titanium. Courtesy of Zimmer Inc., Warsaw, IN
More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006857
EISBN: 978-1-62708-392-8
... of the residual bone occurs, which may result in detrimental readsorptive bone remodeling ( Ref 32 ). However, when a considerable amount of interconnected pores is introduced into a titanium structure, the elastic modulus can decrease to the level of cancellous bone ( Ref 36 ). Furthermore, the bone tissue can...
Abstract
Additive manufacturing (AM), or three-dimensional (3D) printing, has been widely used for biomedical devices due to its higher freedom of design and its capability for mass customization. Additive manufacturing can be broadly classified into seven categories: binder jetting, directed energy deposition (DED), material extrusion, material jetting, powder-bed fusion (PBF), sheet lamination, and vat photopolymerization. Due to their capability for manufacturing high-quality parts that are fully dense, PBF and DED are the most widely used groups of AM techniques in processing metals directly. In this article, the processing of titanium and its alloys by PBF and DED is described, with a specific focus on their use in biomedical devices. The article then covers the density and mechanical properties of both commercially pure titanium and titanium-aluminum-vanadium alloy. Lastly, the challenges and potential of using new titanium-base materials are discussed.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005684
EISBN: 978-1-62708-198-6
... Abstract Physically, tantalum is a dark, blue-gray, lusterless metal that exists in two crystalline forms: an alpha-phase with a body-centered cubic structure, and a brittle beta-phase with a tetragonal orientation. This article tabulates the physical and material properties of tantalum...
Abstract
Physically, tantalum is a dark, blue-gray, lusterless metal that exists in two crystalline forms: an alpha-phase with a body-centered cubic structure, and a brittle beta-phase with a tetragonal orientation. This article tabulates the physical and material properties of tantalum. It discusses the use of tantalum in medical electronics and the advantage of tantalum over stainless steel. The article describes the manufacturing and medical applications of tantalum foam.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001819
EISBN: 978-1-62708-180-1
... deformation structure of the screw is visible at the bottom of the micrograph. 62× For comparison, the shearing fractures of a commercially pure titanium screw and a cast cobalt-chromium-molybdenum alloy (ASTM F75) screw are shown in Figures 12 and 13 . The spiral-textured fracture surface...
Abstract
This article commences with a description of the prosthetic devices and implants used for internal fixation. It describes the complications related to implants and provides a list of major standards for orthopedic implant materials. The article illustrates the body environment and its interactions with implants. The considerations for designing internal fixation devices are also described. The article analyzes failed internal fixation devices by explaining the failures of implants and prosthetic devices due to implant deficiencies, mechanical or biomechanical conditions, and degradation. Finally, the article discusses the fatigue properties of implant materials and the fractures of total hip joint prostheses.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... titanium alloys METALS AND ALLOYS have a diverse application in the medical field, particularly as implantable internal (in vivo) structural, load-bearing materials in devices for partial and total joint replacement, fracture fixation, and instruments. The field of metallography plays a significant...
Abstract
Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic alloys, including stainless steels, cobalt-base alloys, titanium and titanium alloys, porous coatings, and emerging materials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
... of two different types, namely, cortical and cancellous, or trabecular. They are also spongy in the latter, and are arranged according to the stress distribution of the load. The structural/dimensional and mechanical properties of cortical and cancellous bones vary considerably and are summarized...
Abstract
Additive manufacturing, or three-dimensional printing technologies, for biomedical applications is rather different from other engineering components, particularly for biomedical implants that are intended to be used within the human body. This article contains two sections: "Design and Manufacturing Considerations of 3D-Printed, Commercially Pure Titanium and Titanium Alloy-Based Orthopedic Implants" and "Device Testing Considerations Following FDA Guidance" for additive-manufactured medical devices. These are further subdivided into five major focus areas: materials; design, printing, printing characteristics and parameters as well as postprinting validation; removal of the many manufacturing material residues and sterilization; physical, chemical, and mechanical assessments of the final devices; and biological considerations of all the final devices including biocompatibility.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... for fracture fixation. There are numerous other structural metallic implants. Fig. 1 Diagram of total hip and knee replacements showing component shape and location of implantation Fig. 2 Investment cast titanium alloy knee and hip implant prostheses Fig. 3 Total hip replacement...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
... of cells and tissue fluid and promote tissue regeneration by providing a fine structure on the surface and inside. Stryker (USA) commercialized a titanium alloy implant by 3D-AM with U.S. Food and Drug Administration approval in 2016. It has been confirmed in vitro that bone cells enter and proliferate...
Abstract
This article provides an overview of additive manufacturing (AM) methods, the three-dimensional (3D)-AM-related market, and the medical additive manufactured applications. It focuses on the current scenario and future developments related to metal AM for medical applications. The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D-additive manufacturing.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005888
EISBN: 978-1-62708-167-2
... (including plain carbon, microalloyed, and alloy steels), by far, represent the majority of hot-formed billets, although other materials including titanium, superalloys, aluminum, copper, brass, bronze, magnesium, nickel, and others are also induction heated for forming. Usually the initial temperature...
Abstract
This article provides a rough estimate of the basic parameters, including coil efficiency, power, and frequency in induction heating of billets, rods, and bars. It focuses on the frequency selection for heating solid cylinders made of nonmagnetic metals, frequency selection when heating solid cylinders made from nonmagnetic alloys, and frequency selection when heating solid cylinders made from magnetic alloys. The article describes several design concepts that can be used for induction billet heating, namely, static heating and progressive/continuous heating. It presents the four major factors associated with the location and magnitude of subsurface overheating: frequency, refractory, final temperature, and power distribution along the heating line. The article summarizes the pros and cons of using a single power supply. It also reviews the design features of modular systems, and concludes with information on the temperature profile modeling software.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006277
EISBN: 978-1-62708-169-6
... processes (TMPs), which are combinations of working (deformation) and heat (thermal) treatment ( Ref 19 ), offer an additional degree of freedom to tailor the α + β microstructure for broader applications. Fig. 3 Crystal structures for different phases in titanium alloys. (a) Body-centered cubic β...
Abstract
This article describes the integration of thermodynamic modeling, mobility database, and phase-transformation crystallography into phase-field modeling and its combination with transformation texture modeling to predict phase equilibrium, phase transformation, microstructure evolution, and transformation texture development during heat treatment of multicomponent alpha/beta and beta titanium alloys. It includes quantitative description of Burgers orientation relationship and path, discussion of lattice correspondence between the alpha and beta phases, and determination of the total number of Burgers correspondence variants and orientation variants. The article also includes calculation of the transformation strain with contributions from defect structures developed at alpha/beta interfaces as a precipitates grow in size. In the CALculation of PHAse Diagram (CALPHAD) framework, the Gibbs free energies and atomic mobilities are established as functions of temperature, pressure, and composition and serve directly as key inputs of any microstructure modeling. The article presents examples of the integrated computation tool set in simulating microstructural evolution.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005897
EISBN: 978-1-62708-167-2
... The value of P loss sur represents an undesirable heating of tools, guides, rails, flux concentrators, magnetic shunts, fixtures, enclosures, support beams, and other electrically conductive structures that are located near the induction coil and where appreciable eddy currents can be induced...
Abstract
Estimation of process parameters for selective heating and heat treating of simple- and complex-shaped workpieces in induction hardening can be accurately carried out using numerical simulation techniques such as the finite-element analysis and the finite-different method. Along with the significant benefits of modern numerical simulations, it is important to be able to use rough estimation techniques to develop a general understanding of the critical parameters of a particular induction heating system. This article discusses such numerical techniques for estimating the critical parameters: workpiece power estimation; estimation of electrical and thermal efficiency of the coil; and frequency selection for heating solid cylinders, tubes, pipes, slabs, plates, strips, and rectangular workpieces.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006903
EISBN: 978-1-62708-392-8
... the cortical bone modulus is 10 to 25 GPa (1.5 to 3.6 × 10 6 psi) ( Ref 35 , 36 ). The modulus mismatch can result in stress-shielding effects, which determine fixation stability and clinical success. These challenges have elucidated the need for a porous structure to modulate the elastic modulus of titanium...
Abstract
Additive manufacturing (AM) technologies print three-dimensional (3D) parts through layer-by-layer deposition based on the digital input provided by a computer-aided design file. This article focuses on the binder jet printing process, common biomaterials used in this AM technique, and the clinical applications relevant to these systems. It reviews the challenges and future directions of binder-jetting-based 3D printing.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... (approximately 80 °C, or 175 °F, in the fully annealed state), it transforms to a monoclinic structure referred to as martensite ( Fig. 2(d) ). Fig. 1 Phase diagram for nickel-titanium, with the austenitic phase highlighted as the phase field at 50% Ni marked “TiNi.” It shows some solubility for nickel...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003457
EISBN: 978-1-62708-195-5
... of aluminum to decrease flight delays and cancellations and to reduce life-cycle cost. Moisture Ingression The second major failure mode is moisture ingression, which primarily affects sandwich structure as opposed to monolithic (i.e., solid laminate) construction. Moisture absorption even...
Abstract
This article provides non-proprietary and non-competition-sensitive information related to aircraft applications. It presents an overview of reliability and commonly used measurements. Failure modes that cause the negative performance are reviewed based on many types of sources. These include manufacturer service bulletins, reliability and customer service departments, literature reviews, demonstration programs, in-service evaluations, design guides, and surveys of commercial and military aircraft maintenance organizations. The article also describes lessons learned while attempting to avoid overlapping maintainability, reparability, and materials choice.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... are linearly expanded to form the 3D implant. Highly porous triply periodic minimal surface structures have also been fabricated using commercially pure titanium and Ti-6Al-4V and have shown positive mechanical properties for bone implants ( Ref 29 , 136 ). Topology optimization is a mathematical method...
Abstract
Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments.
1