Skip Nav Destination
Close Modal
Search Results for
calcium phosphate ceramics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 153 Search Results for
calcium phosphate ceramics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
.... The article describes third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods used to test the biocompatibility of ceramics, namely, biosafety testing...
Abstract
Ceramics are used widely in a number of different clinical applications in the human body. This article provides a brief history of the bioceramics field and discusses the classification of bioceramics. These include bioinert ceramics, bioactive ceramics, and bioresorbable ceramics. The article describes third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods used to test the biocompatibility of ceramics, namely, biosafety testing, biofunctionality testing, bioactivity testing, and bioresorbability testing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006903
EISBN: 978-1-62708-392-8
... °F) for 2 h compared to fine powders. The microstructure of 3D-printed structures created by coarse powders had more homogenously distributed pores than fine powders ( Ref 48 ). Calcium Phosphate Ceramics Calcium phosphate ceramic materials, such as hydroxyapatite and tricalcium phosphate...
Abstract
Additive manufacturing (AM) technologies print three-dimensional (3D) parts through layer-by-layer deposition based on the digital input provided by a computer-aided design file. This article focuses on the binder jet printing process, common biomaterials used in this AM technique, and the clinical applications relevant to these systems. It reviews the challenges and future directions of binder-jetting-based 3D printing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006884
EISBN: 978-1-62708-392-8
... Abstract Calcium phosphates react to form more stable salts in aqueous solutions. This phenomenon has been applied to the solidification process for the dental and medical cement calcium phosphate cement, which consists of multiple phases of calcium phosphates and calcium salts; solidification...
Abstract
Calcium phosphates react to form more stable salts in aqueous solutions. This phenomenon has been applied to the solidification process for the dental and medical cement calcium phosphate cement, which consists of multiple phases of calcium phosphates and calcium salts; solidification occurs by the formation of hydroxyapatite. Dicalcium phosphate consists of crystal water along with anhydrous and dihydrate salts. This article summarizes research achievements regarding dicalcium phosphate dihydrate (DCPD) production with controlled morphology and reactivity, including effects of an additive and of production conditions on precipitation. It also summarizes achievements made in the hybridization of nano-apatite onto DCPD particles.
Image
Published: 15 June 2020
Fig. 3 Fine calcium-phosphate lattice structures fabricated using fused deposition of ceramics (FDC): (a) lattices with even spacing, (b) lattices with variable spacing, (c) side view of the lattices, and (d) SEM image showing the surface porosity of filaments. Adapted from Ref 66
More
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
... Abbreviations Medical device category Orthopaedic Cardiovascular, catheters, and pacemakers Calcium based ceramics Hydroxyapatite/tricalcium phosphate HA/TCP, HA-TCP, HAp/TCP, Hap-TCP, Biphasic Calcium Phosphate (BCP) ceramics Ca3(PO 4 )2 (TCP), Ca10(PO 4 )6(OH)2(HA) Fixation devices...
Abstract
This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which is a product of ASM International and Granta Design available by license online and as an in-house version. The material usage was gleaned from over 24,000 U.S. Food and Drug Administration (USFDA), Center for Devices and Radiological Health, Premarket notifications (510k), and USFDA Premarket Approvals, and other device records that are a part of this database. The database includes other material categories as well. The usage of materials in predicate devices is an efficient tool in the material selection process aiming for regulatory approval.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... Abstract Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005741
EISBN: 978-1-62708-171-9
... in temperature causes all of the compounds to melt. After impact on metallic substrates, melted compounds are either crystallized immediately or some become amorphous calcium phosphates, usually in the splat boundary area. At the same time, TECP is decomposed again into Ca 3 (PO 4 ) 2 and CaO. Therefore, plasma...
Abstract
This article provides an overview of how thermal spray technology has adapted to meet the needs of the orthopaedic industry. It includes the challenges facing the development of artificial joints, substrate material selection criteria, thermal spray solutions, and clinical outcomes of thermal spray coatings. The article focuses on plasma thermal spray, which is the technique most often used to make porous titanium and hydroxyapatite (HA) coatings, such as thermal spray titanium, thermal spray HA, solution-precipitated HA, thermal spray chromium oxide, and thermal spray chromium carbide cermet coatings.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... and attachment of bone cells. Ceramic devices are manufactured by a variety of techniques. Typical powder-metallurgy-based routes follow compaction and solid-state sintering of powdered ceramics (alumina and calcium phosphate) or metal-ceramic composites (CermeTi, Dynamet Technology, Inc.) ( Ref 16...
Abstract
This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article discusses specific problems associated with implant manufacturing processes and the consequent compromises in the properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. The article reviews four different types of tissue responses to the biomaterial. It discusses the testing methods of implant failure, such as in vitro and in vivo assessment of tissue compatibility.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006027
EISBN: 978-1-62708-172-6
... Abstract This article provides a brief discussion on the common types of overlayers that can be used on a metal surface to protect it from corrosion. These overlayers include phosphate, chromate, and chromate-free conversion coatings; hot dip galvanizing; cementitious linings; glass...
Abstract
This article provides a brief discussion on the common types of overlayers that can be used on a metal surface to protect it from corrosion. These overlayers include phosphate, chromate, and chromate-free conversion coatings; hot dip galvanizing; cementitious linings; glass and porcelain enamels; electroplating; thermal spray coatings; and rubber linings.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... and processability. However, polymer-based scaffolds show a rapid decrease in stiffness over time once implanted. Calcium phosphate (CaP) based ceramic scaffolds, such as hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ( Ref 77 ), have been extensively studied and used in clinical applications ( Ref 78...
Abstract
Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses these two approaches based on the suitable materials for these constructs and the fabrication processes used to manufacture them. The materials are grouped into polymers, metals, and hydrogels. The article also summarizes the commonly used 3D printing techniques for these materials, as well as cell types used for various applications. Lastly, current challenges in tissue engineering are discussed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001280
EISBN: 978-1-62708-170-2
... metal. A bonding medium, such as sodium silicate, calcium aluminate, phosphoric acid, or glass, is used for coatings applied by troweling. In addition, the use of expanded-metal reinforcements greatly improves troweled coatings. Carbides Carbides as ceramic coatings are principally used for wear...
Abstract
Ceramic coatings are applied to metals to protect them against oxidation and corrosion at room temperature and at elevated temperatures. This article provides a detailed account of the factors to be considered when selecting a ceramic coating and describes the characteristics of various coating materials, namely, silicate glasses, oxides, carbides, silicides, and cermets. It reviews ceramic coating methods: brushing, spraying, dipping, flow coating, combustion flame spraying, plasma-arc flame spraying, detonation gun spraying, pack cementation, fluidized-bed deposition, vapor streaming, troweling, and electrophoresis. The article also includes information on the evaluation of the quality of ceramic coatings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... phosphate ceramics (calcium hydroxyapatite, HA), which provide elements found in bone. The concept involves bonding a thin layer of a biologically active calcium HA coating to the implant. The coating must be capable of being resorbed by the body, which then substitutes natural bone for the calcium...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006853
EISBN: 978-1-62708-392-8
... (HA) has shown positive results in the enhancement of adhesive strength and coating stability ( Ref 60 ). Because of their versatility, calcium phosphate (Ca(PO) 4 )-base coatings are generally fabricated using the plasma-spraying techniques in the industry. Despite its numerous drawbacks...
Abstract
One of the most frequently cited advantages of ceramics in dentistry relates to aesthetics, and the same applies for dental implants. Zirconia has emerged as the material of choice for nonmetal implants. This article introduces the reader to zirconia as an implant material, its properties, manufacturing processes, and the particular surface modifications and treatments that have rendered its surfaces biologically compatible with peri-implant soft and hard tissues.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005668
EISBN: 978-1-62708-198-6
... healing between bone and a prosthetic implant material, which may be ceramic, metallic, or polymeric (e.g., UHMWPE). Examples of such coatings are calcium phosphate and hydroxyapatite, both of which are found to have varying friction and wear properties when sliding in different environments. The results...
Abstract
This article provides an overview of the fundamentals of tribology. It describes the advantages, disadvantages, and applications of the pin-on-disk method, which is the most commonly used configuration for testing biomaterials and for the reproducible measurement of friction and wear. The article illustrates a practical tribocorrosion setup that allows a user to perform wear tests in corrosive environments under well-defined electrochemical conditions and at controlled temperature. It explains the effect of changes in electrical contact resistance on tribological mode. The article discusses various in vivo environmental conditions in tribological tests. Some typical examples of biomaterials testing are also provided.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006887
EISBN: 978-1-62708-392-8
... ). Hydroxyapatite (HAp) mainly consists of human bones and teeth. The elemental composition of calcium hydroxy phosphate is characterized by the chemical formula Ca 10 (PO 4 ) 6 (OH) 2 . Thus, biological ceramic materials can be inorganically synthesized to ensure artificial bone compatibilities and protein...
Abstract
Stereolithographic (STL) additive manufacturing (AM) can be used to fabricate practical components. This article discusses the processes involved in STL-AM of biological scaffolds, providing information on bioscaffold processing, cavity arrangements, and microlattice distributions. Within the last topic, the sub-topic of scaffold modulation is discussed.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006571
EISBN: 978-1-62708-290-7
... processed using BJAM, including some of the most commonly used engineering ceramics, such as alumina (Al 2 O 3 ) ( Ref 50 – 60 ), zirconia (ZrO 2 ) ( Ref 23 ), and silicon carbide (SiC) ( Ref 51 , 61 ); various bioceramics, including calcium-phosphate-base ceramics (e.g., hydroxyapatite) ( Ref 33 , 62...
Abstract
The highly irregular morphologies of ceramic powder particles due to their process history present a challenge to binder jetting additive manufacturing (BJ-AM) ceramic powder feedstock processability, but knowledge of powder metallurgy of ceramics benefits the development and analysis of the BJ-AM ceramic processes. Understanding BJ-AM process principles and ceramics processing challenges requires reviewing a number of fundamental principles, which this article delineates. The discussion covers the processability considerations, a brief summary of some fundamental aspects of modeling of liquid permeation in the powder bed, and process capabilities and advantages of BJ-AM technology.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006886
EISBN: 978-1-62708-392-8
... geometrical accuracy, and no chemical degradation was reported when the optimal printing parameters were in use. Shuai et al. investigated in a similar approach the feasibility of processing a biphasic calcium phosphate (BCP) powder feedstock, comprised of HA and beta-tricalcium phosphate (β-TCP) via dSLS...
Abstract
Hydroxyapatite (HA) is one of the most popular materials in tissue scaffold engineering due to its similarity to the nature of human bone; it accounts for more than half of the total weight of the latter. Selective laser sintering (SLS) is an additive manufacturing method that is used in producing tissue engineering parts from HA feedstocks. This article provides a brief overview of the process itself, along with a detailed review of HA-based tissue engineering applications using SLS. Discussion on the various polymer composites is presented. A detailed overview of selected publications on HA-based SLS studies is listed, which provides insight regarding technical aspects of processing HA powder feedstocks.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003051
EISBN: 978-1-62708-200-6
... Abstract Traditional ceramics, one of two general classes, are commonly used in high-volume manufacturing to make building materials, household products, and various industrial goods. Although there is a tendency to equate traditional ceramics with low technology, sophisticated processes...
Abstract
Traditional ceramics, one of two general classes, are commonly used in high-volume manufacturing to make building materials, household products, and various industrial goods. Although there is a tendency to equate traditional ceramics with low technology, sophisticated processes and advanced manufacturing techniques are often used where these materials are employed. This article examines several traditional ceramics, including structural clay, whiteware, glazes, enamels, portland cements, and concrete. It also provides a detailed account of fabrication methods, properties, and applications. As an example, common applications for structural clay include facing materials, load-bearing units, pavers, and ceramic tiles.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003050
EISBN: 978-1-62708-200-6
... process. Other materials are also being considered, including glass-bonded zeolites and phosphate-bonded ceramics. Other Regulated Products According to the Occupational Safety and Health Administration (OSHA) and other regulatory bodies, lead is not the only hazardous material used in the ceramic...
Abstract
Ceramic and glass manufacturers take environmental regulations into consideration during all stages of the product cycle, from research and development to purchasing, processing, end use, and disposal. Ceramic and glass products are finding application in the construction industry and as raw materials for other processes. This article describes the recycling of in-process scrap and industrial wastes (fly ash, red mud, metallurgical waste, and other waste products), and applications of these recycled products. It focuses on environmental regulations such as Resource Conservation and Recovery Act and Clean Air Act. The Clean Air Act requires all states to meet minimum emissions standards for nitrogen-oxygen compounds, volatile organic compounds, and carbon monoxide.