Skip Nav Destination
Close Modal
Search Results for
butt joint seal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 125 Search Results for
butt joint seal
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2001
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003428
EISBN: 978-1-62708-195-5
.... It discusses the design considerations for sealants in joints. The article describes the common methods to seal aircraft structures: fay surface, fillet, butt joint, channel, brush, and form-in-place seals. It discusses the surface preparation and application method of primer and topcoat systems. Primer...
Abstract
Environmental effects of ground and flight environments, including temperature extremes, damage by chemical fluids, moisture, and so forth, affect the durability of polymer-matrix composites. This article provides information on corrosion control methods in aircraft structures. It discusses the design considerations for sealants in joints. The article describes the common methods to seal aircraft structures: fay surface, fillet, butt joint, channel, brush, and form-in-place seals. It discusses the surface preparation and application method of primer and topcoat systems. Primer and paint application equipment as well as sealant application equipment are reviewed.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001379
EISBN: 978-1-62708-173-3
... pressures associated with the process are favorable to the deformation welding of low-ductility alloys. In a similar process, extrusion welding has been used to butt weld tubes. The ends of the tubes are prepared for extrusion by beveling at a 45 to 60° angle to produce an overlapping joint ( Fig. 1...
Abstract
Coextrusion welding (CEW) is a solid-state process that produces a weld by heating two or more workpieces to the welding temperature and forcing them through an extrusion die. This article describes cold and hot CEW for common metals such as low-carbon steel, aluminum, aluminum alloys, copper, and copper alloys. Additional applicable materials include nickel, nickel-base alloys, zirconium, titanium, tantalum, and niobium.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005567
EISBN: 978-1-62708-174-0
... uniformity of heating. In a closely related process, magnetically induced arc butt welding, the surfaces to be welded are heated by a rapidly rotating arc plasma. Generally, the process is conducted in the open air, with oxygen partially occluded from the joint area by the initial contact of the faying...
Abstract
Forge welding is a solid-state joining process in which the workpieces are heated to the welding temperature and then sufficient blows or force are applied to cause permanent deformation and bonding at the faying surfaces. Coextrusion welding is a solid-state process that produces a weld by heating two or more workpieces to the welding temperature and forcing them through an extrusion die. This article illustrates typical joint configurations used for manual and automatic forge welding applications. It provides information on the common metals welded by coextrusion welding, such as low-carbon steel, aluminum, copper, and copper alloys. The article also explains the common coextrusion behaviors.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005614
EISBN: 978-1-62708-174-0
..., and the welding tooling are important factors that have a major influence on the weld quality and rate of production obtained. Various joint designs, including butt, corner, T-, lap, and edge joints, can be made by the EBW process using square-groove or seam welds. Square-groove welds require fixturing...
Abstract
Electron beam welding (EBW) can produce deep, narrow, and almost parallel-sided welds with low total heat input and relatively narrow heat-affected zones in a wide variety of common and exotic metals. This article focuses on essential parameters of EBW, namely, weld and surface geometry, part configuration, melt-zone configuration, weld atmosphere (vacuum and nonvacuum), and joint design. It describes various aspects considered in EBW of thin and thick metal sections and poorly accessible joints. An overview of scanning and joint tracking techniques for inspection of electron beam-welded joints is also included. The article concludes with discussions on EBW defects, the use of filler metal for weld repair, and the control plans, codes, and specifications of the EBW process.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001444
EISBN: 978-1-62708-173-3
... alloys, titanium alloys, copper and copper alloys, magnesium alloys, and beryllium. aluminum alloys beryllium butt joints copper copper alloys corner joints electron-beam welding electron-beam wire-feed process heat-resistant alloys joint design magnesium alloys multiple-pass welds...
Abstract
Electron-beam welding (EBW) can produce deep, narrow, and almost parallel-sided welds with low total heat input and relatively narrow heat-affected zones in a wide variety of common and exotic metals. This article discusses the joint configurations and shrinkage stresses encountered in various joint designs for electron-beam welding, as well as special joints and welds including multiple-pass welds, tangent-tube welds, three-piece welds, and multiple-tier welds. It provides a comparison of medium vacuum EBW with high-vacuum EBW. Scanning is a method of checking the run-out between the beam spot and the joint to be welded. The article describes various scanning techniques for welding dissimilar metals and provides information on the application of electron-beam wire-feed process for repairs. It concludes with a discussion on EBW of heat-resistant alloys, refractory metals, aluminum alloys, titanium alloys, copper and copper alloys, magnesium alloys, and beryllium.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005558
EISBN: 978-1-62708-174-0
.... arc welding butt joints edge preparation fillet welds groove angle groove welds root opening submerged arc welding weld joint A WELD JOINT serves to transfer the stresses between the joined members and throughout the welded assembly. The type of loading and service of the weldment...
Abstract
This article provides information on the various types of welds and joints. It reviews the weld joint design considerations: the ability to transfer load and the cost. The article explains the throat size and weld size requirements of fillet welds, and presents a comparison of fillet and groove welds. It details the various design considerations for groove-weld selection, including the groove angle, root opening, and depth of the groove. The article also describes the methods of edge preparation and concludes with an illustration of the recommended proportions of grooves for arc welding.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003048
EISBN: 978-1-62708-200-6
..., and polypropylenes. In addition, the article provides practical design insight, addressing application requirements, seal configurations, and joint stresses. It concludes with a brief discussion on the use of sealants in aerospace, automotive, electrical, and construction applications. sealant applications...
Abstract
This article is an informative primer on sealants and the role they play in engineered assemblies. It discusses the physical, thermal, chemical, and electrical properties of sealant materials and the various forms in which they are applied, including liquids, pastes, and extruded tapes. It also describes classifications and types, comparing and contrasting sealants made from oil-based caulks, asphalts, coal tar resins, latex acrylic sealants, polyvinyl acetate caulks, solvent acrylics, butyl sealants, polysulfides, polyurethanes, modified silicones, anaerobics, vinyl plastisols, and polypropylenes. In addition, the article provides practical design insight, addressing application requirements, seal configurations, and joint stresses. It concludes with a brief discussion on the use of sealants in aerospace, automotive, electrical, and construction applications.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006490
EISBN: 978-1-62708-207-5
... in conjunction with motion used for the welding path. Shown in Table 1 are parameters that were established for conventional LBW and LSW for producing butt, lap, fillet, and lap-fillet joints on 3.0 mm (0.12 in.) thick alloy 6013-T4. A neodymium: yttrium-aluminum-garnet (Nd:YAG) laser at a power of 4.5 kW...
Abstract
Although laser stir welding (LSW) is applied to various metallic systems, it is especially appropriate to laser beam welding (LBW) of aluminum, because liquid aluminum possesses significantly less surface tension and viscosity than most common metal alloys, which results in greater fluidity of the molten pool. This article schematically illustrates the keyhole instability in LBW and describes the process details of LSW. Representative macrographs of butt, lap, and fillet welds produced using the LBW and LSW processes are presented. The article discusses the laser welding technologies having a large impact on the ability to apply LSW in production. It concludes with information on the industrial applications of LSW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005631
EISBN: 978-1-62708-174-0
... Abstract This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices...
Abstract
This article describes the joint preparation, fit-up and design of various types of laser beam weld joints: butt joint, lap joint, flange joint, kissing weld, and wire joint. It explains the use of consumables for laser welding and highlights the special laser welding practices of steel, aluminum, and titanium engineering alloys. Laser weld quality and quality assessment are described with summaries of imperfections and how its operations contribute to providing repeatable and reliable laser welds. Relevant laser weld quality specifications are listed.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001373
EISBN: 978-1-62708-173-3
... welding process. The use of that process, as well as the electric flash butt welding process, has eliminated joint bars (mechanical fasteners) and greatly lessened track maintenance. Long sections of continuous welded rail (CWR) (typically, 440 m, or 1440 ft) that are welded by the flash butt welding...
Abstract
Thermite welding (TW) is a fusion welding process in which two metals become bonded after being heated by superheated metal that has experienced an aluminothermic reaction. This article describes the thermite welding principles by presenting equations of the aluminothermic reaction that occurs in thermite welding. It provides information on the applications of thermite welding: rail welding, electrical connections, and railroad applications. The article concludes with a discussion on the associated safety aspects.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001367
EISBN: 978-1-62708-173-3
..., whereas an upset weld can be controlled, through joint design and welding parameters, to have essentially no internal upset ( Fig. 1 ). Fig. 1 Upset weld configurations in butt welds of pipe with an outside diameter of 25 mm (1 in.) and a wall of 3 mm (0.1 in.). Upset has been machined from...
Abstract
Upset welding (UW) is a resistance welding process utilizing both heat and deformation to form a weld. A wide variety of shapes and materials can be joined using upset welding in either a single-pulse or continuous mode. This article discusses the advantages and disadvantages of upset welding, as well as the types of welds. The advantages include speed, ease of control, fewer defects, enhanced weld properties, simplicity of equipment, less-strict composition requirements, and ability to join difficult-to-weld materials. The article reviews the role of a homopolar generator as an alternative method for supplying the electrical current for upset welding.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002488
EISBN: 978-1-62708-194-8
... or distribute forces generated during service from one part to the other parts of an assembly. A joint can be either temporary or permanent. Commonly, five joint types are used in the joining of parts: butt, tee, corner, lap, and edge ( Fig. 1 ). Fig. 1 Types of joints. Source: Ref 1...
Abstract
This article explains how to design a joint or conduct a joining process so that components can be produced most efficiently and without defects. The joining processes include mechanical fastening, adhesive bonding, welding, brazing, and soldering. The article discusses the selection and application of good design practices based on the understanding of process-related manufacturing aspects such as accessibility, quality, productivity, and overall manufacturing cost. It provides several examples of selected parts and joining processes to illustrate the advantages of a specific design practice in improving manufacturability.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005680
EISBN: 978-1-62708-198-6
..., during crossed-wire welding, the forces applied by electrodes during resistance microwelding (RMW) aid in achieving sufficient contact, whereas a clamping fixture is required for laser welding. Fig. 11 Common joint geometries for thin sheet. (a) Butt joint. (b) Lap joint. (c) Lap joint: fillet...
Abstract
Microjoining methods are commonly used to fabricate medical components and devices. This article describes key challenges involved during microjoining of medical device components. The primary mechanisms used in microjoining for medical device applications include microresistance spot welding (MRSW) and laser welding. The article illustrates the fundamental principles involved in MRSW and laser welding. The article presents examples of various microjoining methods used in medical device applications, including pacemaker and nitinol microscopic forceps.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003056
EISBN: 978-1-62708-200-6
... properties of the seal interface is essential. In addition to classification by material type, ceramic joining can also be classified by the bonding mechanism or process. Within each material classification introduced above, there exist subclasses based on the type of joint: mechanical fastening...
Abstract
Many applications of ceramics and glasses require them to be joined to each other or to other materials such as metals. This article focuses on ceramic joining technologies, including glass-metal sealing, glass-ceramic/metal joining, ceramic-metal joining, ceramic-ceramic joining, and the more advanced joining of nonoxide ceramics. It also discusses metallizing, brazing, diffusion bonding, and chemical bonding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005633
EISBN: 978-1-62708-174-0
... Abstract Flash welding, also called flash butt welding, is a resistance welding process in which a butt joint weld is produced by a flashing action and by the application of pressure. The flash welding process consists of preweld preparation, flashing, upsetting (forging), and postweld heat...
Abstract
Flash welding, also called flash butt welding, is a resistance welding process in which a butt joint weld is produced by a flashing action and by the application of pressure. The flash welding process consists of preweld preparation, flashing, upsetting (forging), and postweld heat treatment. This article provides an overview of both flash welding and upset welding and describes the various process and failure origins of flash welding as well as the equipment used. It also explains the characteristics and advantages of solid-state upset welding.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001439
EISBN: 978-1-62708-173-3
... Airtight doors for an aerospace application were made by welding panels of alloy AZ31B-H24 sheet to frames extruded from AZ31B. The frames, which acted as stiffeners, also contained a groove for an air seal. Cross sections of similar offset butt joints in two designs of door assemblies are shown as joints...
Abstract
Most magnesium alloys can be joined by gas-tungsten arc welding (GTAW) and gas-metal arc welding (GMAW). This article describes relative weldability ratings and provides information on joint design and surface preparation and the use of filler metals and shielding gases suitable to arc welding of magnesium alloys. The article describes the repair welding of castings, with examples. It concludes with a discussion on heat treatment of castings after welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001365
EISBN: 978-1-62708-173-3
... a whole new set of applications in tailored blank manufacturing, primarily for automotive use ( Ref 2 ). Butt Seam Weld A joint in which two abutting edges are welded is classified as a butt seam joint ( Fig. 1c and 3 ). The thickness of the weld should be approximately the same, or slightly less...
Abstract
Resistance seam welding (RSEW) is a process in which the heat generated by resistance to the flow of electric current in the work metal is combined with pressure to produce a welded seam. This article discusses the various classes of the RSEW process, namely roll spot welding, reinforced roll spot welding, and leak-tight seam welding. It provides information on the applications of lap seam weld, mash seam weld, and butt seam weld. The article reviews the advantages and limitations of seam welding compared to resistance spot welding, projection welding, and laser welding. It describes the four basic types of resistance seam weld machines: circular, longitudinal, universal, and portable. The article concludes with a discussion on weld quality and process control for seam welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001478
EISBN: 978-1-62708-173-3
... to laboratory work in determining the basic properties of brazed joints. As a general rule, the standard notch-type specimens are not suitable for brazed joints. Special types of joints may be required to obtain accurate results. Standard butt joints with modified notches also can be used. Torsion Tests...
Abstract
This article outlines the requirements and methods associated with the inspection of brazements. It emphasizes the incorporation of these requirements into the overall quality system. The article reviews the acceptance limits, design limitations, and nondestructive and destructive inspection techniques involved in the brazement inspection. Selected case studies are also provided for further reference.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001438
EISBN: 978-1-62708-173-3
... for welding. The horizontal position is used in some fillet welding of corner joints and T-joints. Vertical and overhead positions and the horizontal position are less frequently used in welding butt joints. These positions are ordinarily restricted to GTAW, GMAW, and PAW of the less conductive aluminum...
Abstract
Copper and copper alloys offer a unique combination of material properties that makes them advantageous for many manufacturing environments. This article begins with a discussion on common metals that are alloyed with copper to produce the various copper alloys. It then reviews the factors that affect the weldability of copper alloys, including thermal conductivity of the alloy being welded, shielding gas, type of current used during welding, joint design, welding position, and surface condition. The article provides information on arc welding processes such as gas-metal arc welding, shielded metal arc welding, submerged arc welding, plasma arc welding, and gas-tungsten arc welding. It concludes with a discussion on safe welding practices.
1