Skip Nav Destination
Close Modal
By
George E. Dieter
By
Howard A. Kuhn
By
Soo-Ik Oh, John Walters, Wei-Tsu Wu
By
Soo-Ik Oh, John Walters, Wei-Tsu Wu
By
Anil Chaudhary, Suhas Vaze
By
Chris Schade
By
R.D. Blaugher
By
M. Krzyzanowski, J.H. Beynon
Search Results for
bulk forming processes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1413
Search Results for bulk forming processes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
.... This Volume presents the state-of-the-art in bulk-metalworking processes. A companion volume ( ASM Handbook , Volume 14B, Metalworking: Sheet Forming ) describes the state-of-the-art in sheet-forming processes. Various major sections of this Volume deal with descriptions of specific processes, selection...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Book Chapter
Evaluation of Workability for Bulk Forming Processes
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis. bend test bulk forming processes cracking...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Book Chapter
Workability Theory and Application in Bulk Forming Processes
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009004
EISBN: 978-1-62708-185-6
... Abstract This article focuses on the effects of mechanical plasticity on workability; that is, process control of localized stress and strain conditions to enhance workability. It describes the nature of local stress and strain states in bulk forming processes, leading to a classification...
Abstract
This article focuses on the effects of mechanical plasticity on workability; that is, process control of localized stress and strain conditions to enhance workability. It describes the nature of local stress and strain states in bulk forming processes, leading to a classification scheme, including testing procedures and specific process measurements, that facilitate the application of workability concepts. Using examples, the article applies these concepts to forging, rolling, and extrusion processes. The stress and strain environments described in the article suggest that a workability test should be capable of subjecting the material to a variety of surface strain combinations. By providing insights on fracture criteria, these tests can be used as tools for troubleshooting fracture problems in existing processes, as well as in the process development for new product designs.
Image
Schematic workability diagrams for bulk forming processes. Strain path (a) ...
Available to PurchasePublished: 01 January 2002
Fig. 36 Schematic workability diagrams for bulk forming processes. Strain path (a) would lead to failure for material A. Both strain paths (a and b) can be used for the successful forming of material B.
More
Book Chapter
Finite Element Method Applications in Bulk Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004021
EISBN: 978-1-62708-185-6
... Abstract This article provides a summary of the overall development of the finite element method (FEM) and its contribution to the materials forming industry. It presents an overview of FEM methodologies and applications in the order of their usage in typical manufacturing (bulk forming process...
Abstract
This article provides a summary of the overall development of the finite element method (FEM) and its contribution to the materials forming industry. It presents an overview of FEM methodologies and applications in the order of their usage in typical manufacturing (bulk forming process) process sequence: primary materials processing, hot forging and cold forming, and product assembly. The article discusses the material fracture and dies stress analysis and presents the optimization techniques used in 2-D and 3-D preform die design.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005100
EISBN: 978-1-62708-186-3
..., Metalworking: Bulk Forming , 2005) describes the state of the art in bulk-forming processes. Various major sections of this Volume deal with descriptions of specific processes, selection of equipment and die materials, forming practice for specific alloys, and various aspects of process design and control...
Abstract
Sheet forming comprises deformation processes in which a metal blank is shaped by tools or dies, primarily under the action of tensile stresses. This article discusses the classification of sheet-forming processes for obtaining desired dimensional features. It describes different process-related developments, namely, superplastic forming of aluminum, forming of tailor-welded blanks, rubber-pad forming, and high-velocity metal forming. The article explains cost-effective approaches of evaluating tooling designs prior to the manufacture of expensive steel dies and dieless forming techniques such as thermal forming and peen forming. It provides information on the application of advanced high-strength steels, magnesium alloys, and various ultrafine-grain materials for superplastic sheet forming. The article concludes with information on the development and application of simulation, design, and control of sheet-forming processes.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003322
EISBN: 978-1-62708-176-4
... Abstract Forming processes can be divided into three major categories: bulk forming, sheet-metal forming, and semisolid forming and polymer extrusion. This article introduces each process category with a description of the constitutive models. It outlines the required properties for process...
Abstract
Forming processes can be divided into three major categories: bulk forming, sheet-metal forming, and semisolid forming and polymer extrusion. This article introduces each process category with a description of the constitutive models. It outlines the required properties for process modeling and describes the test methods for determining these properties. The article discusses several compression tests used to determine stress-strain curves for bulk forming and tensile tests used to obtain stress-strain curves for sheet-metal forming. The article concludes with information on the measurement of viscosity of semisolid alloy materials by using three types of viscometers: the coaxial cylinder viscometer, the cone-and-plate viscometer, and the capillary viscometer.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002485
EISBN: 978-1-62708-194-8
... to achieve tight control of dimensions for mass production, and typically some net surfaces can be achieved. While the goal is to achieve a net shape, it is rare that a totally net shape is produced by bulk-deformation processes, and some machining is typical to produce a usable part. Sheet-forming processes...
Abstract
This article introduces the reasons behind the selection of a deformation process as the method of choice for producing a part or product form. It discusses the advantages, disadvantages, and categories of deformation processes. The article describes the major design considerations in applying a deformation process. Some fundamental aspects of plastic flow, flow stress, cold and hot working, workability, and formability are presented. The article provides information on free-surface cracking, central burst or chevron cracking, and cracking on die contact surface, as well as the microstructural effects on metal flow. It also discusses the defects in sheet-metal formed parts and flow-related defects in bulk forming.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004025
EISBN: 978-1-62708-185-6
... properties nickel-base superalloys specific heat steel thermal conductivity thermal diffusivity thermophysical properties titanium alloys NUMERICAL PROCESS MODELING has become, since the 1990s, the tool of choice to design or optimize bulk-forming processes. This has been made possible during...
Abstract
The material data for forging can be divided into two categories, namely, mechanical properties and thermophysical properties. This article describes the flow characteristics of key engineering materials, such as steels, aluminum alloys, copper alloys, titanium alloys, and nickel-base superalloys. It discusses the thermophysical properties for designing or optimizing a metalworking process: specific heat, coefficient of thermal expansion, thermal conductivity/diffusivity, and density.
Book Chapter
Bulk Formability of Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
... the distinction between bulk formability and sheet formability, it may be useful to compare and contrast the types of deformation that occur during typical bulk and sheet forming processes. In both processes, the surfaces of the deforming metal are in contact with forming tools, and friction may have a major...
Abstract
This article discusses the bulk formability or workability of steels. It describes their formability characteristics and presents procedures for various formability tests used for carbon and alloy steels. Tests for bulk formability can be divided into two main categories: primary tests and specialized tests. The article compares the processing of microalloyed plate and bar products. The article focuses on the use of torsion testing to evaluate the forgeability of carbon and alloy steels and presents information on measuring flow stress. The article discusses the metallurgy and thermomechanical processing of high-strength low-alloy (microalloyed) steels and the various parts of the rolling operation. The article summarizes some of the common tests for determining formability in open-die and closed-die forgings.
Book Chapter
Finite Element Method Applications in Bulk Forming
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005539
EISBN: 978-1-62708-197-9
... model. The article also covers material fracture and die stress analysis and reviews optimization of the design of forming processes. bulk forming carbon diffusion model cold forming deformation deformation model diffusion finite element method forging dies heat transfer properties heat...
Abstract
This article provides a summary of the overall development of the finite element method (FEM) and its contribution to the materials forming industry. It focuses on the overall philosophy and evolution of the FEM for solving bulk forming issues. A number of applications of FEM are presented in the order they would be used in a typical manufacturing process sequence: primary materials processing, hot forging and cold forming, and product assembly. The article discusses four FEM modules: the deformation model, the heat-transfer model, the microstructural model, and the carbon diffusion model. The article also covers material fracture and die stress analysis and reviews optimization of the design of forming processes.
Book Chapter
Design Optimization for Dies and Preforms
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004022
EISBN: 978-1-62708-185-6
... invaluable insight into bulk-forming processes such as forging, extrusion, rolling, ring rolling, drawing, and cogging, only rarely can it produce an optimal design in the first attempt. A reincarnated legacy design can inherit a mixed bag of pluses and minuses. However, whether the past pluses and minuses...
Abstract
For forming processes, optimization goals range from tuning the process parameters while keeping geometry unchanged to finding optimal geometry for intermediate dies in a multistage forming operation. This article commences with a description on the three salient steps of optimization procedures: defining the objective function, calculating the objective function, and searching an optimum design. It concludes with an example illustrating the optimization of conical-die extrusion.
Book Chapter
Bulk Molding Compounds
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003034
EISBN: 978-1-62708-200-6
..., and chop to length. Prepreg fabric can also be diced or chopped, with fabric used as the reinforcement. The resultant fabric is in a macerated form. Molding Methods Bulk molding compounds are processed by compression, transfer, and injection molding. Compression molding is used for large parts...
Abstract
Bulk molding compounds can be molded into a variety of complex shapes by methods that can be readily automated for high volume production. This article describes the formulation and processing (compound formation, and molding methods) of bulk molding compounds. It discusses the effects of fiber type, fiber length, and matrix type on thermoset bulk molding compounds. The markets for long-fiber-reinforced bulk molding compounds are electrical, ordnance, aerospace, industrial, sporting goods, and automotive applications.
Book Chapter
Failures Related to Metalworking
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... of metalworking operations that can be roughly divided into bulk-working operations and sheet-forming operations ( Ref 1 ). The general distinction here is that bulk working imposes material flow in all directions, while sheet-forming operations are typically limited to two-dimensional deformation. Metalworking...
Abstract
This article describes the general root causes of failure associated with wrought metals and metalworking. This includes a brief review of the discontinuities or imperfections that may be the common sources of failure-inducing defects in bulk working of wrought products. The article discusses the types of imperfections that can be traced to the original ingot product. These include chemical segregation; ingot pipe, porosity, and centerline shrinkage; high hydrogen content; nonmetallic inclusions; unmelted electrodes and shelf; and cracks, laminations, seams, pits, blisters, and scabs. The article provides a discussion on the imperfections found in steel forgings. The problems encountered in sheet metal forming are also discussed. The article concludes with information on the causes of failure in cold formed parts.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
... Strains , J. Test Eval. , Vol 13 , 1985 , p 39 – 45 10.1520/JTE10758J 28. Kuhn H.A. , Workability Theory and Application in Bulk Forming Processes , Forming and Forging , Vol 14 , ASM Hand-book , ASM International , 1988 , p 388 – 404 29. Dewhirst D.L. , Finite...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005714
EISBN: 978-1-62708-171-9
... the particles onto the substrate and form a coating. This low-pressure cold spray process yields coatings of select ductile materials with acceptable coating characteristics, as compared to the high-pressure process which yields coatings of almost any material with highest coating qualities. Typical gas-jet...
Abstract
The distinguishing feature of the cold spray process, when compared with the conventional thermal spray process, is its ability to produce coatings with high-velocity rather than high-temperature particle jet. This article provides an overview of the cold spray process and the parameters that affect both the process deposition efficiency and properties of the prepared coatings. It describes a variety of cold spray coating materials, namely, pure metals, ferrous and nonferrous metal alloys, composites, and cermets. The article presents various industrial applications of cold spray coatings.
Book Chapter
Introduction to Metal Powder Production and Characterization
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006086
EISBN: 978-1-62708-175-7
... of metal powders, both as individual particles and in bulk form. This is important to ensure adequate control of powder production processes and to ensure the required properties for parts manufacturing are met. The Section “Metal Powder Characterization” in this Volume also features a series of articles...
Abstract
Various powder production processes allow precise control of the chemical composition and physical characteristics of powders and allow tailoring of specific attributes for targeted applications. Metal powders are produced by either mechanical methods or chemical methods. The commonly used mechanical methods include water and gas atomization, milling, mechanical alloying, and electrolysis. Some chemical methods include reduction of oxides. This article provides information on the reliable techniques for powder characterization and testing to evaluate the chemical and physical properties of metal powders, both as individual particles and in bulk forms.
Book Chapter
High-Temperature Superconductors for Wires and Tapes
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001114
EISBN: 978-1-62708-162-7
... at the composition 2223 with a lower-transition 85 K phase forming at 2212. Partial substitution of lead for the bismuth appears to promote the development of the 2223, 110 K phase. The bismuth compound's major advantage over the Y-123 is its relative insensitivity to oxygen loss during processing, and it does...
Abstract
The discovery of the high-critical-temperature oxide superconductors has accelerated the interest for superconducting applications due to its higher-temperature operation at liquid nitrogen or above and thus reduces the refrigeration and liquid helium requirement. It also permits usage of the high-critical-temperature oxides in magnets or power applications in high-current-carrying wire or tape with acceptable mechanical capability. This article discusses the powder techniques mainly based on the production of an oxide powder precursor, which is then subjected to various processing, including powder-in-tube processing, vapor deposition processing, and melt processing. It further discusses the microstructural, anisotropy and weak link influences on these processes.
Book Chapter
Interface Effects for Deformation Processes
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005417
EISBN: 978-1-62708-196-2
... into the tools, measuring both the normal and the tangential contact stresses. These methods have been applied to measure interfacial stresses in several bulk forming processes ( Ref 17 , 18 , 19 , 20 , 21 , 22 ). A strain-gaged cantilever with its tip in the contact zone and its subsequent refinements...
Abstract
This article examines the deformation processes in metal-forming operations and considers the effects introduced by scale factors when microforming. It discusses the process parameters and variables affecting surface interactions, including temperature, speed, reduction, stiffness, and dynamic response of equipment. The article reviews the determination of friction coefficient using laboratory monitoring methods, indirect measurements, and the inverse method. It considers the determination of the interface heat-transfer coefficient by using the ring test and computer simulations. The article describes the behavior of oxide scale on the surface of hot metal undergoing thermomechanical processing. It concludes with information on the effects of process and material parameters on interfacial phenomena.
Image
Schematic workability diagram for bulk deformation processes. Strain path (...
Available to PurchasePublished: 01 December 1998
Fig. 4 Schematic workability diagram for bulk deformation processes. Strain path (a) would lead to failure for material A. Both strain paths can be used for the successful forming of material B. Source: Ref 10
More
1