Skip Nav Destination
Close Modal
Search Results for
bulk forming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 480 Search Results for
bulk forming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004021
EISBN: 978-1-62708-185-6
... Abstract This article provides a summary of the overall development of the finite element method (FEM) and its contribution to the materials forming industry. It presents an overview of FEM methodologies and applications in the order of their usage in typical manufacturing (bulk forming process...
Abstract
This article provides a summary of the overall development of the finite element method (FEM) and its contribution to the materials forming industry. It presents an overview of FEM methodologies and applications in the order of their usage in typical manufacturing (bulk forming process) process sequence: primary materials processing, hot forging and cold forming, and product assembly. The article discusses the material fracture and dies stress analysis and presents the optimization techniques used in 2-D and 3-D preform die design.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004001
EISBN: 978-1-62708-185-6
... aluminide alloys, are also discussed. aluminide alloy bulk deformation bulk forming cold-hearth melting conventional hot forging extrusion gamma titanium aluminide alloy intermetallic alloy isothermal forging microstructure silicide intermetallic alloy thermomechanical processing vacuum...
Abstract
This article reviews the bulk deformation processes for various aluminide and silicide intermetallic alloys with emphasis on the gamma titanium aluminide alloys. It summarizes the understanding of microstructure evolution and fracture behavior during thermomechanical processing of the gamma aluminides with particular reference to production scaleable techniques, including vacuum arc and cold-hearth melting, isothermal forging, conventional hot forging, and extrusion. The selection and design of manufacturing methods, in the context of processing-cost trade-offs for gamma titanium aluminide alloys, are also discussed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis. bend test bulk forming processes cracking...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009004
EISBN: 978-1-62708-185-6
... Abstract This article focuses on the effects of mechanical plasticity on workability; that is, process control of localized stress and strain conditions to enhance workability. It describes the nature of local stress and strain states in bulk forming processes, leading to a classification...
Abstract
This article focuses on the effects of mechanical plasticity on workability; that is, process control of localized stress and strain conditions to enhance workability. It describes the nature of local stress and strain states in bulk forming processes, leading to a classification scheme, including testing procedures and specific process measurements, that facilitate the application of workability concepts. Using examples, the article applies these concepts to forging, rolling, and extrusion processes. The stress and strain environments described in the article suggest that a workability test should be capable of subjecting the material to a variety of surface strain combinations. By providing insights on fracture criteria, these tests can be used as tools for troubleshooting fracture problems in existing processes, as well as in the process development for new product designs.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... Volume presents the state-of-the-art in bulk-metalworking processes. A companion volume ( ASM Handbook , Volume 14B, Metalworking: Sheet Forming ) describes the state-of-the-art in sheet-forming processes. Various major sections of this Volume deal with descriptions of specific processes, selection of...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
... stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis. bend test bulk deformation bulk workability testing compression test forging fracture limit line partial-width...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... summarized in this article. The most common testing techniques for workability prediction are discussed in “Bulk Workability Testing” in this Handbook. Much greater detail on these tests and on workability tests specific to a particular bulk forming process, such as forging, are given in subsequent articles...
Abstract
This article provides the definitions of stress and strain, and describes the relationship between stress and strain by stress-strain curves and true-stress/true-strain curves. The emphasis is on understanding the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. The article reviews the process variables that influence the degree of workability and summarizes the mathematical relationships that describe the occurrence of room-temperature ductile fracture under workability conditions. It discusses the most common situations encountered in multiaxial stress states. The construction of a processing map based on deformation mechanisms is also discussed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009011
EISBN: 978-1-62708-185-6
... all of these aspects, which is primarily a result of the large deformations that are common in massive forming processes such as forging, extrusion, and rolling. For most common mechanical tests—simple tension and compression tests—the maximum uniform strains achieved are rather low because of necking...
Abstract
This article discusses the equipment design, procedures, experimental considerations, and interpretation of the torsion tests used to establish workability. It describes the application of torsion testing to obtain flow-stress data and to gage fracture-controlled workability and flow-localization-controlled failure. The article discusses the torsion test used to establish the processing parameters that are required to produce the desired microstructures.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... plastic forming. Products manufactured through bulk forming operations, such as rolling or extrusion, and intended for various technological applications, will exhibit characteristic final textures. In particular, sheet forming operations demand optimization of the rolled product anisotropy for ulterior...
Abstract
This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation of complex forming operations, through the use of the finite element method, are also presented.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004010
EISBN: 978-1-62708-185-6
... Abstract This article describes the roll forming of components of nickel, titanium, and aluminum alloys. The metallurgical characteristics of the roll formed components, such as macrostructures, microstructures, tensile strength, and stress rupture performance, are discussed. The article...
Abstract
This article describes the roll forming of components of nickel, titanium, and aluminum alloys. The metallurgical characteristics of the roll formed components, such as macrostructures, microstructures, tensile strength, and stress rupture performance, are discussed. The article compares the resulting properties of roll formed and conventionally forged components.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004014
EISBN: 978-1-62708-185-6
... Abstract A wide range of flow-formed open- and close-ended shapes are currently available in a variety of difficult-to-form materials, including titanium alloys and nickel-base super alloys. This article describes the two basic methods of flow forming that are characterized by the position of...
Abstract
A wide range of flow-formed open- and close-ended shapes are currently available in a variety of difficult-to-form materials, including titanium alloys and nickel-base super alloys. This article describes the two basic methods of flow forming that are characterized by the position of the rolls during the forming process. The flow forming methods include staggered-roll flow forming process and in-line flow-forming process. Typical mechanical properties of flow-formed materials in various conditions are summarized in a table. Proper process controls and subsequent product qualification tests are critical to assure optimal performance of the flow-formed tubular component. The article discusses the most commonly required process control parameters and the effects of forming speed and temperature in the flow forming process.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003983
EISBN: 978-1-62708-185-6
... the swaging of solid bar stock. Tubes with thinner walls require greater force, depending on tube diameter and length of die, because friction traps the metal between the die and mandrel, and there is no bulk metal to move. Machines with dies that produce a squeezing action are rated according to...
Abstract
Rotary swaging is an incremental metalworking process for reducing the cross-sectional area or otherwise changing the shape of bars, tubes, or wires by repeated radial blows with two or more dies. This article discusses the applicability of swaging and metal flow during swaging. It describes the types of rotary swaging machines, auxiliary tools, and swaging dies used for rotary swaging and the procedure for determining the side clearance in swaging dies. The article presents an overview of automated swaging machines and tube swaging, with and without a mandrel. It analyzes the effect of reduction, feed rate, die taper angle, surface contaminants, lubrication, and material response on swaging operation. The article discusses the applications for which swaging is the best method for producing a given shape, and compares swaging with alternative processes. It concludes with a discussion on special applications of swagging.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003999
EISBN: 978-1-62708-185-6
... lubricants used in nickel-base alloys forging. It describes two major forging processing categories for nickel-base alloys: primary working and secondary working categories. Primary working involves the deformation processing and conversion of cast ingot or similar bulk material into a controlled...
Abstract
Forging of nickel-base alloys results in geometries that reduce the amount of machining to obtain final component shapes and involves deformation processing to refine the grain structure of components or mill products. This article discusses the heating practice, die materials, and lubricants used in nickel-base alloys forging. It describes two major forging processing categories for nickel-base alloys: primary working and secondary working categories. Primary working involves the deformation processing and conversion of cast ingot or similar bulk material into a controlled microstructure mill product, such as billets or bars, and secondary working refers to further forging of mill product into final component configurations.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
... Abstract Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed...
Abstract
Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed, through feed, planetary, and internal. This article focuses on the capabilities, limitations, and machines used for these methods. It describes the three characteristics, such as rollability, flaking, and seaming, used in evaluating and selecting metals for thread rolling. The article explores the factors affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between thread rolling and grinding.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004022
EISBN: 978-1-62708-185-6
... routinely provide invaluable insight into bulk-forming processes such as forging, extrusion, rolling, ring rolling, drawing, and cogging, only rarely can it produce an optimal design in the first attempt. A reincarnated legacy design can inherit a mixed bag of pluses and minuses. However, whether the past...
Abstract
For forming processes, optimization goals range from tuning the process parameters while keeping geometry unchanged to finding optimal geometry for intermediate dies in a multistage forming operation. This article commences with a description on the three salient steps of optimization procedures: defining the objective function, calculating the objective function, and searching an optimum design. It concludes with an example illustrating the optimization of conical-die extrusion.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004013
EISBN: 978-1-62708-185-6
... Abstract Coextrusion is defined as the simultaneous extrusion of two or more metals to form an integral product that can be carried out using conventional extrusion or drawing equipment at a temperature appropriate to the metal system being formed. This article discusses the applications...
Abstract
Coextrusion is defined as the simultaneous extrusion of two or more metals to form an integral product that can be carried out using conventional extrusion or drawing equipment at a temperature appropriate to the metal system being formed. This article discusses the applications, billet configurations, and metal flow modes of coextrusion. It presents the analytical studies of coextrusion: deformation energy methods, lower-bound (slab) analyses, upper-bound analyses, and finite-element analyses. These studies are used to identify the regime of material properties and process variables for which sound extrusions can be obtained. The article concludes with a discussion on the state-of-the-art of coextrusion that assists in developing process models, which accurately describe both the macroscopic and microscopic aspects of a process.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003990
EISBN: 978-1-62708-185-6
... and rotational motion, while lower die rotates. (b) Upper die has translational, rotational, and orbital (rocking) motion; lower die is stationary. (c) Upper die has orbital (rocking) motion only; lower die has translational motion. Abstract Radial forging is a hot- or cold-forming process...
Abstract
Radial forging is a hot- or cold-forming process that uses two or more radially moving anvils or dies to produce solid or tubular components with constant or varying cross sections along their lengths. This article focuses on the workpiece configuration, workpiece materials, machines, dies, advantages, and limitations of radial forging. It concludes with a discussion on the applications of radial forging.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004035
EISBN: 978-1-62708-185-6
... summary in the form of a checklist. datum planes dimensioning draft allowance finish allowance forging design tolerancing tooling points A DIMENSION is a numerical value, typically expressed in decimals of an inch, fractions of an inch (used more so in the past), and decimals of a metric...
Abstract
The design of forging operations; consisting of dies, fixturing, and parts; requires a consistent and unambiguous method for representing critical dimensions and tolerances. This article presents a dimensioning process, based on tooling points and datum planes, with the potential to simplify geometries while minimizing tolerance stack-ups. The method also facilitates inspection liaison between vendors and users because fixturing is easy to duplicate and tooling points are consistent from forging to finish-machined part. The article focuses on the most common dimensional tolerances for closed-die forgings, including finish allowances for machining, length and width tolerances, die-wear tolerance, match tolerances, die-closure or thickness tolerances, straightness and flatness tolerances, radii tolerances, flash-extension tolerances, and surface tolerances. It also contains a convenient summary in the form of a checklist.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004024
EISBN: 978-1-62708-185-6
... process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process. 3D Keltool process direct rapid tooling forging dies hot isostatic pressing indirect...
Abstract
This article describes two rapid tooling technologies, namely, direct rapid tooling and indirect rapid tooling, for forging-die applications. Commonly used direct rapid tooling technologies include selective laser sintering, three-dimensional printing, and laser-engineered net shape process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process.