Skip Nav Destination
Close Modal
Search Results for
buildup alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 581 Search Results for
buildup alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003162
EISBN: 978-1-62708-199-3
... carbon steel or stainless steel, materials that do not provide desirable wear on their own. In addition, hardfacing alloys are applied to critical wear areas of original equipment or during reclamation of parts. These alloys, which are referred to as buildup alloys, are not designed to resist wear...
Abstract
Hardfacing is defined as the application of a wear-resistant material, in depth, to the vulnerable surfaces of a component by a weld overlay or thermal spray process Hardfacing materials include a wide variety of alloys, carbides, and combinations of these materials. Iron-base hardfacing alloys can be divided into pearlitic steels, austenitic (manganese) steels, martensitic steels, high-alloy irons, and austenitic stainless steel. The types of nonferrous hardfacing alloys include cobalt-base/carbide-type alloys, laves phase alloys, nickel-base/boride-type alloys, and bronze type alloys. Hardfacing applications for wear control vary widely, ranging from very severe abrasive wear service, such as rock crushing and pulverizing to applications to minimize metal-to-metal wear. This article discusses the types of hardfacing alloys, namely iron-base alloys, nonferrous alloys, and tungsten carbides, and their applications and advantages.
Image
Published: 01 January 2006
Fig. 18 Alloy restoration after intraoral usage showing the severity of plaque buildup that can occur. Source: Ref 75
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006577
EISBN: 978-1-62708-210-5
... rake and relief angles and a sharp nose radius promote good surface finish and minimize tool edge buildup for both carbide and polycrystalline diamond tools. Tool geometry for turning 390 aluminum alloy with C3 carbide, and a polycrystalline diamond, SPG422 insert: 0° Back rake angle 5° Side...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Cu-Mg hypereutectic casting alloys 390.0, A390.0, and B390.0. Tool lives for the machining of alloys 380 and 390 are illustrated.
Image
Published: 01 December 2008
Fig. 8 Cross section of a tilt furnace for the high-frequency induction melting of brass and bronze alloys. Crucible is of clay-graphite composition. Also shown are the locations of the molten metal buildup and the voids in the backup refractory, which shorten crucible life.
More
Image
Published: 01 January 1987
Fig. 78 Effect of a 15-min 800- °C (1470- °F) air exposure on a dimple rupture fracture surface of an annealed Ti-6Al-6V-2Sn alloy. (a) Fracture appearance before exposure. (b) The identical fracture surface after exposure. The oxide buildup is so great that it is impossible to identify
More
Image
Published: 01 January 1993
Fig. 3 Effect of a 15 min 800 °C (1470 °F) air exposure on a fracture surface of an annealed Ti-6Al-6V-2Sn alloy. (a) Fracture appearance before exposure. (b) The identical fracture surface after exposure; the oxide buildup is so great that it is impossible to identify the fracture mode
More
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 11 Hot corrosion attack of René 77 nickel-base alloy turbine blades. (a) Land-based, first-stage turbine blade. Notice deposit buildup, flaking, and splitting of leading edge. (b) Stationary vanes. (c) A land-based, first-stage gas turbine blade that had type 2 hot corrosion attack. (d
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001442
EISBN: 978-1-62708-173-3
... steel weld cladding and the factors influencing joint integrity in dissimilar metal joining. It concludes with a discussion on joining carbon and low-alloy steels to various dissimilar materials (both ferrous and nonferrous) by arc welding. arc welding buildup alloys carbon steel dissimilar...
Abstract
Hardfacing is a form of surfacing that is applied for the purpose of reducing wear, abrasion, impact, erosion, galling, or cavitation. This article describes the deposition of hardfacing alloys by oxyfuel welding, various arc welding methods, laser welding, and thermal spray processes. It discusses the categories of hardfacing alloy, such as build-up alloys, metal-to-metal wear alloys, metal-to-earth abrasion alloys, tungsten carbides, and nonferrous alloys. A summary of the selection guide for hardfacing alloys is presented in a table. The article describes the procedures for stainless steel weld cladding and the factors influencing joint integrity in dissimilar metal joining. It concludes with a discussion on joining carbon and low-alloy steels to various dissimilar materials (both ferrous and nonferrous) by arc welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001444
EISBN: 978-1-62708-173-3
... the beam spot and the joint to be welded. The