Skip Nav Destination
Close Modal
Search Results for
brominated bisphenol-a-based epoxy resin
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13 Search Results for
brominated bisphenol-a-based epoxy resin
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006077
EISBN: 978-1-62708-172-6
... Abstract This article provides a detailed discussion on the principal classes and curatives of epoxy resins used in the coatings industry. The principal classes are bisphenol A epoxy, bisphenol F epoxy, epoxy phenol novolac, cycloaliphatic epoxies, epoxy acrylate, brominated bisphenol-A-based...
Abstract
This article provides a detailed discussion on the principal classes and curatives of epoxy resins used in the coatings industry. The principal classes are bisphenol A epoxy, bisphenol F epoxy, epoxy phenol novolac, cycloaliphatic epoxies, epoxy acrylate, brominated bisphenol-A-based epoxy, phosphorus-containing epoxy, fluorinated epoxies, epoxy esters, epoxy phosphate esters, and waterborne epoxy. The principal curatives are amines, amine adducts, cyanoethylated amines, ketimines, polyoxyalkylene amines, cycloaliphatic amines, aromatic amines, polyamides, amido amines, and dicyandiamides. Other curatives include polyester co-polymers, phenolic co-polymers, melamine and urea formaldehyde co-polymer resins, phosphate flame retardants, ultraviolet and electron beam curing of epoxy resins, Mannich bases, Mannich-based adducts, and anhydrides. The article concludes by discussing the concerns regarding the use of epoxy coatings.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003845
EISBN: 978-1-62708-183-2
.... The bisphenol-A and brominated bisphenol-A epoxy vinyl-ester resins provide the best resistance against caustic and alkaline hypochlorite solutions, respectively. The epoxy novolac vinyl-ester resins provide the best resistance to strong acids, such as sulfuric acid, and solvent environments ( Ref 1 , Ref 5...
Abstract
This article describes the resin and fabrication requirements associated with fiberglass-reinforced plastic equipment. It provides a discussion on various resins and their resistance to various environments. These include polyester, epoxy, epoxy vinyl-ester, and furan and phenolic thermosetting resins. The article concludes with a discussion on the curing system of thermosetting resins.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003692
EISBN: 978-1-62708-182-5
... and interior coatings below grade. Pitch emulsions used as pavement sealers. Relatively inexpensive Cross-linked thermosetting resins Bisphenol-F epoxies Lower volatile organic compound (VOC) content than Bis-A epoxies. Better temperature and chemical resistance than Bis-A types. Intermediate...
Abstract
This article discusses the coating systems categorized by the generic type of binder or resin and grouped according to the curing or hardening mechanism inherent within that generic type. It focuses on the properties, advantages, and limitations of various autooxidative cross-linked resins, thermoplastic resins, and cross-linked thermosetting resins. The autooxidative cross-linked resins include alkyd resins and epoxy esters. The article examines the two types of coatings based on thermoplastic resins: those deposited by evaporation of a solvent, commonly called lacquers, and those deposited by evaporation of water, a class of coatings called water-borne coatings. The coatings that chemically cross link by copolymerization, including epoxies, unsaturated polyesters, urethanes, high-temperature curing silicones, and phenolic linings, are also described.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003362
EISBN: 978-1-62708-195-5
... with a structure analogous to the DGEBA-types. An important variant is the epoxy resin produced from tetrabromo bisphenol-A. These brominated resins are used to impart flame retardancy into the final product and are commonly used in electrical applications. Multiple forms are available with various bromine...
Abstract
This article discusses the three basic elements of an epoxy resin formulation that must be understood when selecting a thermoset system. These include base resins, epoxy resin curatives, and modifiers. The article provides examples of epoxy resin formulations that illustrate how raw materials are combined to tailor a formulation to a specific application. It concludes with a discussion on general guidelines for the safe handling of epoxy resins and their associated products.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006009
EISBN: 978-1-62708-172-6
... as homopolymers or as copolymers with monomers such as styrene. Vinyl Ester Novolac Resins Epoxy novolacs (epoxy resins based on phenol formaldehyde novolacs) used for the epoxy resin backbone can be utilized to formulate specialty vinyl ester resins. Heat-deflection points of 132 to 149 °C (270 to 300 °F...
Abstract
This article provides a discussion on polyester coating applications such as powder coatings, can coatings, and automotive paints. It includes an overview, structure, properties, and benefits of vinyl ester resins. The article discusses the additives for both unsaturated polyester and vinyl ester coatings, namely, curing systems, thixotropic agents and fillers. It exemplifies polyester and vinyl ester coating, lining and flooring systems that are used for top-to-bottom protection of industrial plants and equipment. The article also highlights the concerns to be addressed when using polyesters and vinyl esters.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003363
EISBN: 978-1-62708-195-5
... of the corrosion-resistant composite industry. In recent years, they have been replaced by isophthalic resins for mildly corrosive applications and bisphenol A epoxy based vinyl esters in more aggressive environments. Currently, BPA fumarates are used almost exclusively in applications requiring exceptional...
Abstract
This article provides an overview of the various types of unsaturated polyester resins and low-profile additives. The resins include general-purpose resins, isophthalic resins, bisphenol A fumarate resins, chlorendic resins, and vinyl ester resin. The article describes the mechanical and electrical properties, thermal and oxidative stability, and chemical and ultraviolet (UV) resistance of polyester resins. It concludes with a discussion on the flame-retardant polyester resins.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003010
EISBN: 978-1-62708-200-6
... Cyanate resins, also known as cyanate esters, cyanic esters, or triazine resins, feature the polymerizable functional group — O — C ≡ N on an aromatic backbone. Like epoxies, these thermosetting resins are derived from bisphenols or polyphenols, and are available as monomers, oligomers (prepolymers...
Abstract
A thermosetting resin, or thermoset, is a synthetic organic polymer that cures to a solid, infusible mass by forming a three-dimensional network of covalent chemical bonds. Significant applications include construction and thermoset engineering plastics. This article discusses the general and family characteristics of thermosetting resin families, including allyls, aminos (urea formaldehyde and melamine formaldehyde), cyanates, epoxies, polybenzimidazoles, unsaturated polyesters, thermoset polyimides, phenolics, and vinyl esters. It also explains processing methods, including curing and curing agents. The article provides descriptions of commercial product forms and the wide array of applications of thermosetting resins. It also tabulates the performance properties (mechanical, thermal, electrical and chemical resistance) of some families of unfilled or unreinforced thermosetting resins and reinforced or filled grades.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003002
EISBN: 978-1-62708-200-6
... Synthetic-fiber filled 1.24–2.10 31–48 4.5–7 13.8 2.0 0.27–2.4 0.5–4.5 120–220 245–430 150–230 300–430 Epoxies Bisphenol A No filler 1.06–1.40 26–90 4–13 1.4–3.4 0.2–0.5 0.11–0.53 0.2–1.0 45–260 115–500 120–260 250–500 Graphite-fiber reinforced 1.37–1.38...
Abstract
This article is a comprehensive collection of engineering tables providing information on the mechanical properties of and the techniques for processing and characterizing polymeric materials, such as thermosets, thermoset-matrix unidirectional advanced composites, and unreinforced and carbon-and glass-reinforced engineering thermoplastics. Values are also provided for chemical resistance ratings for selected plastics and metals, and hardness of selected elastomers.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003417
EISBN: 978-1-62708-195-5
... a significant amount of unpublished art in combining the continuous reinforcements and resins in a continuous operation that has kept the processor base small. During the 1980s, there was a dramatic increase in market acceptance, technology development, and pultrusion industry sophistication. In the 1990s...
Abstract
Pultrusion is a cost-effective automated process for manufacturing continuous, constant cross-section composite profiles. This article describes the process characteristics and advantages of pultrusion. It provides information on the applications of pultrusion and discusses the processing equipment and tooling, the material composition, and the process control essential for a basic understanding of the pultrusion process.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003844
EISBN: 978-1-62708-183-2
... and provides adhesion to the substrate contributes the greatest effect to the environmental resistance of a coating system. When describing most protective coatings, terms such as epoxy, polyurethane, alkyd, and silicate are used. These are generic descriptions of the resin or binder. The principal...
Abstract
Paints and protective coatings are the most common means of protecting materials from deterioration. This article focuses on coating degradation that results from the environmental interaction with the coatings. The major environmental influences of the degradation include energy (solar radiation, heat and temperature variation, and nuclear radiation), permeation (moisture, solvent retention, chemical, and oxygen), stress (drying and curing, vibration, and impact and abrasion), and biological influences (microbiological and macrobiological).
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... (grade A ingot) 1.36 2.38 Magnesium (ingot) 0.29 0.51 Brass (ingot) 1.25 2.18 Mild steel (sheet) 0.27 0.47 Amino resin thermoset 0.85 1.49 Nylon 6/6 0.25 0.44 Aluminum (ingot) 0.78 1.37 Aluminum (ingot) 0.21 0.37 Phenolic thermoset 0.75 1.31 PMMA 0.19 0.33 Silicon...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006073
EISBN: 978-1-62708-172-6
..., the reactive sites of each of the reacting molecules must align and come within very close proximity to each other (generally within 3 to 5 angstroms (Å = 1 × 10 –10 m) for the chemical crosslinking reaction to occur ( Ref 1 ). For example, in an epoxy resin that is crosslinked with a polyamide copolymer...
Abstract
This article discusses the environmental influences on protective coating films that can result in deterioration. These environmental factors can be classified into four groups: (1) energy: solar, heat; (2) permeation: moisture, solvent, chemical, and gas; (3) stress: drying and curing-internal stress, and vibration-external stress; and (4) biological influences such as microbiological, mildew, and marine fouling.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003009
EISBN: 978-1-62708-200-6
...). The thermoplastic nature of acetals, with their sharp melting point and low viscosity, gives a distinct processing advantage over thermosets, such as allyls, epoxies, phenolics, amino resins, and unsaturated polyesters. Postprocess finishing of acetals is usually eliminated by the use of hot runner or submarine...
Abstract
Advanced thermoplastics are stiff, moldable plastics that compete with traditional engineering thermoplastics and thermosets owing to their good tensile, compressive, impact, and shear strength, electrical properties, and corrosion resistance. This article discusses commercial forms, family characteristics, properties and applications of the following advanced thermoplastics: homopolymer and copolymer acetals, fluoropolymers, ionomers, polyamides, polyamide-imides, polyarylates, polyketones, polyaryl sulfones, polybutylene terephthalates, polycarbonates, polyether-imides, polyether sulfones, polyethylene terephthalates, thermoplastic polyimides, liquid crystal polymers, polyphenylene ether blends, polyphenylene sulfides, and polysulfones.