Skip Nav Destination
Close Modal
Search Results for
brittle fracture assessment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 509 Search Results for
brittle fracture assessment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006809
EISBN: 978-1-62708-329-4
... a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility...
Abstract
A detailed fracture mechanics evaluation is the most accurate and reliable prediction of process equipment susceptibility to brittle fracture. This article provides an overview and discussion on brittle fracture. The discussion covers the reasons to evaluate brittle fracture, provides a brief summary of historical failures that were found to be a result of brittle fracture, and describes key components that drive susceptibility to a brittle fracture failure, namely stress, material toughness, and cracklike defect. It also presents industry codes and standards that assess susceptibility to brittle fracture. Additionally, a series of case study examples are presented that demonstrate assessment procedures used to mitigate the risk of brittle fracture in process equipment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture...
Abstract
Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview of the structural design process, the failure analysis process, the failure investigator's role, and how failure analysis of structural components integrates into the determination of remaining life, fitness-for-service, and other life assessment concerns. The topics discussed include industry perspectives on failure and life assessment of components, structural design philosophies, the role of the failure analyst in life assessment, and the role of nondestructive inspection. They also cover fatigue life assessment, elevated-temperature life assessment, fitness-for-service life assessment, brittle fracture assessments, corrosion assessments, and blast, fire, and heat damage assessments.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002386
EISBN: 978-1-62708-193-1
... Abstract This article describes the basis of operating stress maps based on failure assessment diagrams, which are used to assess potential fracture in the whole range of conditions from brittle to fully plastic behavior. It discusses the factors influencing the process of constructing...
Abstract
This article describes the basis of operating stress maps based on failure assessment diagrams, which are used to assess potential fracture in the whole range of conditions from brittle to fully plastic behavior. It discusses the factors influencing the process of constructing an operating stress map based on the principles used in constructing a residual strength diagram. These include plane strain fracture toughness, net section yield, and empiricism. The article details the fatigue crack growth behavior based on stress-corrosion cracking rates and corrosion fatigue factor. It summarizes the linear elastic fracture mechanics (LEFM) concepts for explaining the application of LEFM in damage tolerance analysis. The article exemplifies operating stress maps in a variety of applications.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
... Abstract Fitness-for-service assessment procedures can be used to assess the integrity, or remaining life, of components in service. Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes: brittle fracture, ductile...
Abstract
Fitness-for-service assessment procedures can be used to assess the integrity, or remaining life, of components in service. Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes: brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001037
EISBN: 978-1-62708-161-0
... Abstract Critical structural components must be fabricated from steels that exhibit adequate low-temperature fracture toughness because of the serious consequences of failure due to brittle fracture. This article reviews fracture resistance assessment procedures for welded joints and includes...
Abstract
Critical structural components must be fabricated from steels that exhibit adequate low-temperature fracture toughness because of the serious consequences of failure due to brittle fracture. This article reviews fracture resistance assessment procedures for welded joints and includes discussions on fatigue crack growth and fracture toughness. It presents the fracture toughness requirements specified by different design codes, summarizes the specifications for offshore structural steels provided by international standards organizations, and discusses the applications of these specifications. The article also focuses on advances made in steel technology and the impact of these advances on the fracture toughness of steel.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002384
EISBN: 978-1-62708-193-1
... imperfections. Fig. 1 Defects and discontinuities in welded joints Planar Imperfections Planar imperfections are sharp crack-like features that can substantially reduce the fatigue strength of a welded joint or cause initiation of brittle fractures. Examples include hydrogen cracks, lamellar...
Abstract
This article discusses the various options for controlling fatigue and fractures in welded steel structures, with illustrations. It describes the factors that influence them the most. The article details some of the leading codes and standards for designing against failure mechanisms. Codes are presented for fitness-for-service and standards for fatigue and fracture control.
Image
Published: 01 January 2002
Fig. 4 Failure assessment diagram concept for assessing cracked components for brittle fracture and plastic collapse
More
Image
Published: 01 January 1996
Fig. 27 Failure assessment diagram concept for assessing cracked components for brittle fracture and plastic collapse
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... with fractures are often more difficult to predict, and lifetime assessment tests are more often required for these compared to failure that is primarily cosmetic in nature. Table 1 separates out cosmetic failures from mechanical failures. Types of failures for cosmetic and mechanical failure categories...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... Ship hits iceberg and watertight compartments rupture. Improvement in steel grades Safety procedures established for lifeboats Warning systems established for icebergs Molasses Tank Failures ( Ref 5 ) 1919, 1973 Brittle fracture of the tank as a result of poor ductility and higher loads Design...
Abstract
This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides information on fatigue life assessment, elevated-temperature life assessment, and fitness-for-service life assessment.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
... the material is stressed above or below any ductile-to-brittle transition temperature below which relatively low-energy fractures can occur. Other degradation mechanisms, such as corrosion and oxidation; stress corrosion; erosion from flowing gases, liquids, and solids; hydrogen damage; creep and stress...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003525
EISBN: 978-1-62708-180-1
..., including catastrophic mechanisms, such as brittle fracture, ductile overload, creep rupture, environmental stress cracking, molecular degradation, and fatigue. In the case of failure involving fracture, the determination of the failure mode involves identifying how the crack initiated and how...
Abstract
This article reviews the analytical techniques most commonly used in plastic component failure analysis. These include the Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aid in the characterization of the failures. The article describes the methods used for determining the molecular weight of a plastic resin. It explains the use of mechanical testing in failure analysis and also describes the considerations in the selection and use of test methods.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006844
EISBN: 978-1-62708-387-4
... an exposed fracture surface to reveal the orientation of a crack, an assessment of ductile or brittle macroscopic behavior (fracture mode) can be made. A savvy analyst can apply this knowledge when reviewing nondestructive testing (NDT) results that reveal crack orientation. The most common NDT techniques...
Abstract
With regard to documentation and photography of a catastrophic event, the field investigator's duties are fundamentally different from those of the laboratory-based analyst, even though both share the same goals. This article presents a case study on documentation considerations during the field investigation. It provides a detailed discussion on the general procedure to downselect from a multicomponent assemblage to a set of potential primary failed components. The article describes visual examination in macrofractography.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical...
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... the polymer if they are present in large enough quantity and if the polymer is not crosslinked. Other chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC...
Abstract
With any polymeric material, chemical exposure may have one or more different effects. Some chemicals act as plasticizers, changing the polymer from one that is hard, stiff, and brittle to one which is softer, more flexible, and sometimes tougher. Often these chemicals can dissolve the polymer if they are present in large enough quantity and if the polymer is not crosslinked. Other chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC reagent. Finally, there are some chemicals that cause actual degradation of the polymer, breaking the macromolecular chains, reducing molecular weight, and diminishing polymer properties as a result. This article examines each of these effects. The discussion also covers the effects of surface embrittlement and temperature on polymer performance.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006845
EISBN: 978-1-62708-387-4
..., tension, bending, and compressive loads. This article discusses tools and techniques of visual examination and characteristic features of fracture features. A brief review of ductile and brittle fracture-surface features is provided. The article also describes macroscopic features that can be used...
Abstract
Fracture surfaces can provide an important and indispensable record of many factors in simple or complex failures. Visual examination of fracture surfaces can reveal the type and direction of loading, with fracture-surface features often providing definitive evidence of torsion, tension, bending, and compressive loads. This article discusses tools and techniques of visual examination and characteristic features of fracture features. A brief review of ductile and brittle fracture-surface features is provided. The article also describes macroscopic features that can be used to identify fracture-initiation sites, locations of final overload, and the directions of crack propagation. In addition, the use of these features to characterize loading at the time of failure is also described.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007030
EISBN: 978-1-62708-387-4
... energy of Cu 3 Sn is lower than Cu 6 Sn 5 . The greater the number of Cu 3 Sn stacking layers, the greater the brittleness in the solder joint. The Cu 6 Sn 5 grain coarsening and the Cu 3 Sn grain-oriented elongation can increase the risk of transgranular fracture in IMC grains. Nickel-Tin or Ni...
Abstract
Solder cracking is one of the dominant failure modes of the electronic assembly system. Experience shows that solder joints can fail due to processing defects during solder joint formation or due to excessive loading in various applications. This article introduces major fractography techniques to demonstrate typical solder joint failure and background failure mechanisms. These techniques may be helpful to readers in recognizing failure modes and in preventing further failures during product development and process implementation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC reagent. Finally, there are some chemicals that cause actual degradation of the polymer, breaking...
Abstract
The article commences with an overview of short-term and long-term mechanical properties of polymeric materials. It discusses plasticization, solvation, and swelling in rubber products. The article further describes environmental stress cracking and degradation of polymers. It illustrates how surface degradation of a plain strain tension specimen alters the ductile brittle transition in polyethylene creep rupture. The article concludes with information on the effects of temperature on polymer performance.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... in the United Kingdom. In all three levels of fracture assessment, the resistance of a structure to failure is determined by using a failure assessment diagram (FAD). The y -axis of the FAD indicates the resistance of the structure to brittle fracture, while the x -axis assesses its resistance to plastic...
Abstract
This article briefly reviews the general causes of weldment failures, which may arise from rejection after inspection or failure to pass mechanical testing as well as loss of function in service. It focuses on the general discontinuities observed in welds, and shows how some imperfections may be tolerable and how the other may be root-cause defects in service failures. The article explains the effects of joint design on weldment integrity. It outlines the origins of failure associated with the inherent discontinuity of welds and the imperfections that might be introduced from arc welding processes. The article also describes failure origins in other welding processes, such as electroslag welds, electrogas welds, flash welds, upset butt welds, flash welds, electron and laser beam weld, and high-frequency induction welds.
1