Skip Nav Destination
Close Modal
Search Results for
brittle cleavage
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 266 Search Results for
brittle cleavage
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1987
Fig. 97 Brittle cleavage fracture in ferritic ductile iron. SEM, 1000× (W.L. Bradley, Texas A&M University)
More
Image
in Failure Analysis of Medical Devices
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 14 Scanning electron microscopy micrograph showing brittle cleavage fracture morphology on a high-hardness surgical tool
More
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000603
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that covers pearlitic and ferritic ductile irons. The fractographs display the following: brittle cleavage fracture; fatigue crack propagation; fatigue and monotonic fracture surfaces; fracture modes in slow monotonic loading and impact loading...
Abstract
This article is an atlas of fractographs that covers pearlitic and ferritic ductile irons. The fractographs display the following: brittle cleavage fracture; fatigue crack propagation; fatigue and monotonic fracture surfaces; fracture modes in slow monotonic loading and impact loading; and microcrack initiation and propagation.
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 47 Scanning electron microscopy image showing the cleavage-type brittle crack surface . Original magnification: 1000×
More
Image
Published: 01 January 2002
Fig. 12 Example of unstable rapid fracture in a body-centered cubic (bcc) metal (annealed low-carbon steel). Rapid fracture in this alloy occurs almost completely by microvoid coalescence, but close examination reveals a few areas of brittle cleavage. The bcc structure is not close-packed
More
Image
Published: 01 January 2002
Fig. 20 Schematic of variation in yield strength (YS) and fracture strength (FS) with temperature for fcc and bcc materials. Brittle (cleavage) fracture is possible in bcc material but not in fcc material. Yield strength of bcc materials increases more sharply than that of fcc materials when
More
Image
Published: 15 January 2021
Fig. 21 Schematic of variation in yield strength (YS) and fracture strength (FS) with temperature for face-centered cubic (fcc) and body-centered cubic (bcc) materials. Brittle (cleavage) fracture is possible in bcc material but not in fcc material. Yield strength of bcc materials increases
More
Image
Published: 01 January 2002
a combination of morphologies of ductile microvoid coalescence of the matrix and brittle cleavage and intergranular separation through and around second-phase particles. Courtesy of Howard Nelson ( Ref 2 )
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003537
EISBN: 978-1-62708-180-1
... in a ductile-brittle sequence. Microscale ductile versus brittle fracture: Microscale ductile fracture is uniquely characterized by dimpled fracture surfaces due to microvoid coalescence. Microscale brittle fractures are characterized by either cleavage (transgranular brittle fracture) or intergranular...
Abstract
This article provides an overview of fractography and explains how it is used in failure analysis. It reviews the basic types of fracture processes, namely, ductile, brittle, fatigue, and creep, principally in terms of fracture appearances, such as microstructure. The article also describes the general features of fatigue fractures in terms of crack initiation and fatigue crack propagation.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... is uniquely characterized by dimpled fracture surfaces due to microvoid coalescence. Microscale brittle fractures are characterized by either cleavage (transgranular brittle fracture) or intergranular embrittlement. Fracture Surface Information Correct interpretation of fractographic features...
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000605
EISBN: 978-1-62708-181-8
... fracture, brittle fracture, tensile-test fracture, transgranular fracture, cleavage fracture, delayed fracture, corrosion fatigue, inclusion morphology, fatigue crack propagation, and in-service fatigue fracture of various automotive components. These components include tie rod adjusting sleeves...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of low-carbon steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: the intergranular fracture, bending impact fracture, brittle fracture, tensile-test fracture, transgranular fracture, cleavage fracture, delayed fracture, corrosion fatigue, inclusion morphology, fatigue crack propagation, and in-service fatigue fracture of various automotive components. These components include tie rod adjusting sleeves, automotive bolts, hydraulic jack shafts, crank handle collars, boiler tubes, drive shafts, bicycle pedal axles, lift-truck hydraulic-piston rods, and steel springs.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000608
EISBN: 978-1-62708-181-8
... cracking in this very brittle specimen. 6500× Fig. 402 TEM p-c replica from deep within the impact fracture area, B, in Fig. 397 , showing the quasi-cleavage characteristics of this brittle, untempered specimen. No large facets are visible; this suggests that the specimen had a fine grain size...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of AISI/SAE alloy steels (4xxx steels) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the brittle fracture, ductile fracture, impact fracture, fatigue fracture surface, reversed torsional fatigue fracture, transgranular cleavage fracture, rotating bending fatigue, tension-overload fracture, torsion-overload fracture, slip band crack, crack growth and crack initiation, crack nucleation, microstructure, hydrogen embrittlement, sulfide stress-corrosion failure, stress-corrosion cracking, and hitch post shaft failure of these steels. The components considered in the article include tail-rotor drive-pinion shafts, pinion gears, outboard-motor crankshafts, bull gears, diesel engine bearing cap bolts, splined shafts, aircraft horizontal tail-actuator shafts, bucket elevators, aircraft propellers, helicopter bolts, air flasks, tie rod ball studs, and spiral gears.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000610
EISBN: 978-1-62708-181-8
... candy fracture, cleavage fracture, brittle fracture, high-cycle fatigue fracture, fatigue striations, hydrogen-embrittlement failure, creep crack propagation, fatigue crack nucleation, intergranular creep fracture, torsional overload fracture, stress-corrosion cracking, and grain-boundary damage...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of austenitic stainless steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: fatigue-crack fracture, rock candy fracture, cleavage fracture, brittle fracture, high-cycle fatigue fracture, fatigue striations, hydrogen-embrittlement failure, creep crack propagation, fatigue crack nucleation, intergranular creep fracture, torsional overload fracture, stress-corrosion cracking, and grain-boundary damage of these steels. The austenitic stainless steel components include spring wires, preheater-reactor slurry transfer lines and gas lines of coal-liquefaction pilot plants, oil feed tubes and suction couch rolls of paper machines, cortical screws and compression hip screws of orthopedic implants, and Jewett nails.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
... (100–10,000×) Brittle microprocess, cleavage or intergranular Ductile microprocess, microvoid coalescence Transmission electron microscopy (>10,000×) May have a large level of local plasticity High amount of plasticity globally RA, reduction of area Fracture mode identification chart...
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
..., at the microscale, there is evidence to indicate that the fracture mechanism could have occurred either due to slip and MVC (ductile fracture) or due to cleavage (brittle fracture) in the flat portion. This article focuses on characterizing the fracture-surface appearance at the microscale and contains some...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
... austenite grains. Source: Ref 30 Fig. 69 Schematic figure of the brittle-to-ductile fracture transition. The relative area on the fracture surface of the three microscale fracture mechanisms (stretch zone, dimple zone, and cleavage zone) are indicated. Source: Ref 78 Fig. 71...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Image
Published: 01 January 1996
transgranularly or intergranularly brittle intergranular fracture, BIF. (b) Mode II brittle fracture is preceded by microscopic, but not microscopic, plastic deformation. Indeed, plastic deformation nucleates cracks that may propagate by cleavage or in an intergranular mode (as shown schematically). (c
More
Image
Published: 01 January 2002
Fig. 48 Scanning electron micrographs of cyclic cleavage of Fe-4Si (at.%) at 233 K, Δ K = 18.4 MPa m (16.7 ksi in. ). (a) Overload cleavage appearance at 75×. (b) Magnifications at 750× shows brittle striations on large cleavage river
More
Image
Published: 15 January 2021
Fig. 49 Scanning electron micrographs of cyclic cleavage of Fe-4Si (at.%) at 233 K and stress-intensity range (Δ K ) = 18.4 M P a m (16.7 ksi in ). (a) Overload cleavage appearance at 75×. (b) Magnification at 750× shows brittle striations on large cleavage river
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006323
EISBN: 978-1-62708-179-5
... in a maraging steel specimen. Source: Ref 8 Cleavage Fracture Cleavage fracture is generally defined as the rapid propagation of a crack along a particular crystallographic plane. Cleavage fracture is a brittle mechanism; however, large-scale plastic flow and ductile crack growth can take place...
Abstract
As cast iron parts are extensively applied, fracture events will eventually take place. Consequently, it becomes essential to carry out failure analyses to identify the cause of fracture and to provide corrective actions that allow safe operation. This article presents a description of the main fracture modes and their characteristic fractographic features. It discusses the four principal fracture modes: dimple rupture (or fracture), cleavage, fatigue, and intergranular fracture. The article provides information on special cases of environmentally assisted fracture. It concludes with a description of fractographic analyses for identifying the direction of propagation of a crack.
1