Skip Nav Destination
Close Modal
Search Results for
brine
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 229
Search Results for brine
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2013
Fig. 30 Typical results of the hot-brine hardenability test. Steel composition: 0.18% C, 0.81% Mn, 0.17% Si, and 1.08% Ni. Austenitized at 845 °C (1550 °F). Grain size: 5 to 7. RT, room temperature. Source: Ref 27
More
Image
in Hardenability of Carbon and Low-Alloy Steels[1]
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 5 Hot-brine hardenability test specimen. (a) Specimen dimensions. (b) Method of locating hardness impressions after heat treatment. Dimensions given in millimeters. Source: Ref 2
More
Image
in Hardenability of Carbon and Low-Alloy Steels[1]
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 6 Typical results of the hot-brine hardenability test. Steel composition: 0.18% C, 0.81% Mn, 0.17% Si, and 1.08% Ni. Austenitized at 845 °C (1550 °F). Grain size: 5 to 7. RT, room temperature. Source: Ref 2
More
Image
Published: 01 December 2004
Fig. 1 AISI W1 tool steel austenitized at 800 °C (1475 °F), brine quenched, and tempered 2 h at 150 °C (300 °F). Black rings are hardened zones in 75, 50, and 25 mm (3, 2, and 1 in.) diameter bars. Core hardness decreases with increasing bar diameter (all one-half actual size). (a) Shallow
More
Image
Published: 01 December 2004
Fig. 48 AISI W1 (1.05% C), 19 mm (0.75 in.) diam bars, brine quenched. (a) Hardened case microstructure. 64 HRC. Case contains as-quenched martensite and undissolved carbides. 4% picral. (b) 2% nital etch reveals martensite as dark rather than light. (c) Transition zone. 55 HRC. Martensite
More
Image
Published: 09 June 2014
Fig. 16 Effect of brine concentration on hardness of end-quench specimens. Numbers indicate 1/16 in. increments from quench end. Note: End-quench specimens were not hardened using the standard Jominy end-quench test; specimens were quenched in still water at 100 °C (210 °F) with only the end
More
Image
Published: 30 September 2014
Fig. 5 Relation of hardness to brine concentration when still quenching end-quench specimens in a 99 °C (210 °F) brine solution. Numbers above curves indicate distance from quenched end in 1.6 mm ( 1 16 in.). Source: Ref 4
More
Image
Published: 01 January 2002
Fig. 11 Failed brine-heater shell of ASTM A285, grade C, carbon steel. The shell fractured at welded joints because of overstress during normal operation. Dimensions given in inches
More
Image
in Failure Analysis of Heat Exchangers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 11 Failed brine-heater shell of ASTM A285, grade C carbon steel. The shell fractured at welded joints because of overstress during normal operation. Dimensions in inches
More
Image
Published: 01 February 2024
Fig. 34 Relation of hardness to brine concentration when still-quenching, end quench specimens 90 °C (195 °F) brine solution. Number above curves indicate distance from quench end in units of 1/16 in. Adapted from Ref 14
More
Image
Published: 01 January 2005
Fig. 5 Smeared surface iron pitting of unalloyed titanium tubing in hot brine service. Source: Ref 22
More
Image
Published: 01 January 1986
Fig. 14 Chromatograms for geological brines. (a) Standard 3. (b) Sample A. (c) Sample B
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001029
EISBN: 978-1-62708-161-0
... suited to very low hardenability steels include the hot-brine test and the surface-area-center test. The article discusses the effects of varying carbon content as well as the influence of different alloying elements. It includes charts and a table that serve as a general steel hardenability selection...
Abstract
Hardenability of steel is the property that determines the depth and distribution of hardness induced by quenching. Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of a steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the air hardenability test. Tests that are more suited to very low hardenability steels include the hot-brine test and the surface-area-center test. The article discusses the effects of varying carbon content as well as the influence of different alloying elements. It includes charts and a table that serve as a general steel hardenability selection guide.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003699
EISBN: 978-1-62708-182-5
... causes of corrosion inhibition in waterfloods: oxygen contamination and acid gases dissolved in the brine. A discussion on the bacteria-induced corrosion is provided. The article also explains various tests available for field corrosion monitoring. It details the methods used to monitor corrosion rates...
Abstract
The inhibitors currently in use are generally complex mixtures of reaction products and have been formulated to meet the demands of a very competitive industry. This article discusses these demands on inhibitor formulation. The varying characteristics and number of organic inhibitors are explained by the varying characteristics of oil wells and gas wells. Water injection systems and pipelines are also discussed. The article describes the factors that influence the corrosivity of produced fluids and the various treatments applicable for oil, gas, and pumping wells. It examines the primary causes of corrosion inhibition in waterfloods: oxygen contamination and acid gases dissolved in the brine. A discussion on the bacteria-induced corrosion is provided. The article also explains various tests available for field corrosion monitoring. It details the methods used to monitor corrosion rates and inhibitor effectiveness. The article concludes information on the computerization of inhibitor treating programs.
Image
Published: 30 September 2014
Fig. 7 Relation of hardness to the distance from the quenched end of specimens quenched in water and brine. Cooling power of brine is greater than water at 80 °C (180 °F). Source: Ref 4
More
Image
in H Steels and Steel Selection for Hardenability[1]
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 2 Correlation of equivalent cooling rates in the end-quenched hardenability specimen and round bars quenched in oil, water, and brine. Source: Refs 2 , 3 and 4 (Curves for quenching in brine and still water were calculated by J.L. Lamont, Iron Age, October 14, 1943; curve for water
More
Image
Published: 01 October 2014
Fig. 2 Correlation of equivalent cooling rates in the end-quenched hardenability specimen and round bars quenched in oil, water, and brine. Source: Refs 2 , 3 and 4 (Curves for quenching in brine and still water were calculated by J.L Lamont, Iron Age, October 14, 1943; curve for water
More
Image
in Hardenability of Carbon and Low-Alloy Steels[1]
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 18 Correlation of J ec equivalent cooling rates in the end-quench hardenability specimen and round bars quenched in oil, water, and brine, (a), (c), and (e) Nonscaling austenitizing atmosphere. (b), (d), and (f) Austenitized in air Brine (1), violent agitation Water (2), 60
More
Image
Published: 01 August 2013
Fig. 8 Comparative case-depth and case-hardness data obtained for liquid carburizing process-control specimens made of three steels. (a) Data are for 11 mm diam by 6.4 mm (0.4375 in. diam by 0.25 in.) specimens carburized 2 h at 855 °C (1575 °F), brine quenched and tempered at 150 °C (300 °F
More
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007001
EISBN: 978-1-62708-450-5
... discussed. The article discusses solute additions and several factors impacting quenching. brine quenching cooling rates heat transfer salt solutions MATERIAL PROPERTIES such as hardness, strength, ductility, and toughness are dependent on the microstructural qualities that are present...
Abstract
This article explains cooling mechanisms involving saltwater solutions used as quenchants. The analyses of cooling power include studies of cooling curves, heat-transfer coefficients, and cooling rates. The influence of other bath parameters, such as temperature and agitation, is also discussed. The article discusses solute additions and several factors impacting quenching.
1