Skip Nav Destination
Close Modal
Search Results for
bright-field illumination
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 267 Search Results for
bright-field illumination
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 29 Comparison of bright-field illumination (a), cross-polarized light (b), and differential interference contrast illumination (c and d) used to examine the basketweave pattern of an α-β Ti-6Al-4V alloy. Figures (c) and (d) illustrate the observation of reversed topography by adjusting
More
Image
Published: 01 December 2004
Fig. 31 Polycrystalline zirconium. (a) Bright-field illumination. (b) Crossed polarized light illumination. Chemically polished in 45 mL HNO 3 , 45 mL H 2 O 2 , and 10 mL HF. 100×
More
Image
Published: 01 December 2004
Fig. 32 Graphite nodules in cast iron. (a) Bright-field illumination. (b) Differential interference-contrast illumination. (c) Crossed polarized light illumination. 2% nital. 400×
More
Image
Published: 01 December 2004
Image
in Metallography and Microstructures of Magnesium and Its Alloys
> Metallography and Microstructures
Published: 01 December 2004
Fig. 21 Comparison of (a) conventional etching and bright-field illumination with (b) electrolytic etching and polarized light illumination. Specimen is thixocast (semisolid process) AZ91. Electrolytic etching reveals individual grains by the coloration while retaining good contrast
More
Image
in Rough Grinding and Polishing of Fiber-Reinforced Composite Samples[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 17 Bright-field illumination (25× objective) of a composite specimen after final alumina polish. Note the interferometer bands on the longitudinal fibers. This is one way to check the uniformity of the polishing plane.
More
Image
in Special Sample Preparation and Polishing for Fiber-Reinforced Composites[1]
> Metallography and Microstructures
Published: 01 December 2004
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 1 Carbon fiber composite/honeycomb chamfer area. Bright-field illumination, 5× objective. 4 × 5 in. 14-picture (Polaroid) micrograph montage
More
Image
in Viewing Composite Specimens Using Reflected Light Microscopy[1]
> Metallography and Microstructures
Published: 01 December 2004
Fig. 5 Bright-field illumination of a unidirectional carbon fiber composite showing the ply angles. Bright-field illumination, 10× objective (insets 25× objective)
More
Image
Published: 31 August 2017
Fig. 55 Graphite nodule examined in bright-field illumination. As-polished. Original magnification: 1000×
More
Image
Published: 01 January 2001
Fig. 3 Bright-field illumination (200×) of a composite specimen after alumina polish. Note the interferometer bands on the longitudinal fibers. This is one way to check the flatness of the polish.
More
Image
Published: 01 January 2001
Fig. 13 Bright-field illumination of a unidirectional carbon fiber composite specimen showing the ply angles. 80 to 200×
More
Image
Published: 01 January 2001
Fig. 17 A composite specimen containing a crack. (a) Bright-field illumination. (b) Same location with the use of fluorescence 390 to 440 nm and Zyglo Penetrant (Magnaflux, Glenview, IL). Both 200×
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003754
EISBN: 978-1-62708-177-1
... discusses the examination of specimen surfaces using polarized light, phase contrast, oblique illumination, dark-field illumination, bright-field illumination, interference-contrast illumination, and phase contrast illumination. Special techniques and devices that may be used with the optical microscope...
Abstract
This article provides information on the basic components of a light microscope, including the illumination system, collector lens, and optical and mechanical components. It describes optical performance in terms of image aberrations, resolution, and depth of field. The article discusses the examination of specimen surfaces using polarized light, phase contrast, oblique illumination, dark-field illumination, bright-field illumination, interference-contrast illumination, and phase contrast illumination. Special techniques and devices that may be used with the optical microscope, to obtain additional information, are also described. The article concludes with information on photomicroscopy and macrophotography.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
... are markedly inferior to what can be achieved using the light microscope, as shown in this article. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
... microscopy. bright-field illumination composite materials contrast microscopy dark-field illumination dyes etchants fluorescence microscopy interference microscopy macrophotography microscope alignment optical microscopy polarized-light microscopy reflected-light microscopy sample...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003464
EISBN: 978-1-62708-195-5
... grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi...
Abstract
Microscopy is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. This article describes the sample preparation techniques of composite materials. These techniques include mounting, rough grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi-fluorescence. The article also provides information on transmitted light microscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009079
EISBN: 978-1-62708-177-1
... Abstract This article describes the microcrack analysis of composite materials using bright-field illumination, polarized light, dyes, dark-field illumination, and epi-fluorescence. bright-field illumination composite materials dark-field illumination dyes epi-fluorescence microcrack...
Image
Published: 01 January 1987
Fig. 17 Comparison of bright-field (a), DIC (b), and dark-field (c), illumination for viewing a partially fractured (by impact) specimen of AISI type 312 weld metal containing substantial σ phase. All 240×
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009077
EISBN: 978-1-62708-177-1
.... This article describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance. bright-field illumination composite materials...
Abstract
Analyzing the structure of composite materials is essential for understanding how the part will perform in service. Assessing fiber volume variations, void content, ply orientation variability, and foreign object inclusions helps in preventing degradation of composite performance. This article describes the optical microscopy and bright-field illumination techniques involved in analyzing ply terminations, prepreg plies, splices, and fiber orientation to provide the insight necessary for optimizing composite structure and performance.
1