Skip Nav Destination
Close Modal
By
American Welding Society Committee on Definitions and Symbols
By
Bo Hu
By
David O'Donnell
Search Results for
braze welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1936
Search Results for braze welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Electron-beam braze weld in beryllium. Courtesy of Rockwell International E...
Available to Purchase
in Procedure Development and Practice Considerations for Electron-Beam Welding[1]
> Welding, Brazing, and Soldering
Published: 01 January 1993
Fig. 34 Electron-beam braze weld in beryllium. Courtesy of Rockwell International Energy Systems Group
More
Image
Cross section of a gas metal arc braze weld on sheet metal. Courtesy of Edi...
Available to PurchasePublished: 31 October 2011
Fig. 9 Cross section of a gas metal arc braze weld on sheet metal. Courtesy of Edison Welding Institute
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001345
EISBN: 978-1-62708-173-3
... and laser brazing, microwave brazing, and braze welding. braze welding brazing dip brazing electron-beam brazing exothermic brazing filler-metal flow furnace brazing induction brazing infrared brazing laser brazing manual torch brazing microwave brazing resistance brazing surface...
Abstract
This article describes the physical principles of brazing with illustrations and details elements of the brazing process. The elements of brazing process include filler-metal flow, base-metal characteristics, filler-metal characteristics, surface preparation, joint design and clearance, temperature and time, rate and source of heating, and protection by an atmosphere or flux. The article explains the different types of brazing processes: manual torch brazing, furnace brazing, induction brazing, dip brazing, resistance brazing, infrared (quartz) brazing, exothermic brazing, electron-beam and laser brazing, microwave brazing, and braze welding.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006301
EISBN: 978-1-62708-179-5
... welding, oxyfuel welding, and braze welding. The article discusses various special techniques, such as groove-face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article describes other fusion welding methods...
Abstract
This article describes some examples of the different welding processes for gray, ductile, and malleable irons. These processes include fusion welding, repair welding, shielded metal arc welding, gas metal arc welding, flux cored arc welding, gas tungsten arc welding, submerged arc welding, oxyfuel welding, and braze welding. The article discusses various special techniques, such as groove-face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article describes other fusion welding methods such as electrical resistance welding and thermite welding. It reviews thermal spraying processes, such as flame spraying, arc spraying, and plasma spraying, of a cast iron.
Book
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001435
EISBN: 978-1-62708-173-3
... machining, the desired finish of the machined surfaces, and prior heat treatment. It describes various welding process for welding cast irons, including oxyfuel welding, braze welding, shielded metal arc welding, gas metal arc welding, and gas-tungsten arc welding. braze welding carbon cast iron...
Abstract
Cast iron can be described as an alloy of predominantly iron, carbon, and silicon. This article discusses the classification of cast irons, such as gray cast iron, white cast iron, malleable cast iron, ductile cast iron, and compacted graphite iron. It reviews the various special techniques, such as groove face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article discusses the need for postweld heat treatment that depends on the condition of the casting, possible distortion during subsequent machining, the desired finish of the machined surfaces, and prior heat treatment. It describes various welding process for welding cast irons, including oxyfuel welding, braze welding, shielded metal arc welding, gas metal arc welding, and gas-tungsten arc welding.
Book: Composites
Series: ASM Handbook Archive
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003375
EISBN: 978-1-62708-195-5
... honeycomb: adhesive bonding and expansion, corrugation and adhesive bonding, corrugation and braze welding, and extrusion. The article describes cell configuration and properties of honeycomb. It discusses the factors influencing specification of structural cores, including materials, size, density...
Abstract
Lightweight structural cores are used on aircrafts to reduce weight and increase payload and fight distance. This article discusses the classification of lightweight structural cores, namely, honeycomb, balsa, and foam. It reviews the four primary manufacturing methods used to produce honeycomb: adhesive bonding and expansion, corrugation and adhesive bonding, corrugation and braze welding, and extrusion. The article describes cell configuration and properties of honeycomb. It discusses the factors influencing specification of structural cores, including materials, size, density, mechanical properties, environmental compatibility, formability, durability, and thermal behavior. The article provides information on the benefits and concepts of a sandwich panel containing lightweight structural cores.
Book Chapter
Glossary of Terms: Welding, Brazing, and Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0005662
EISBN: 978-1-62708-173-3
... Abstract This article presents a glossary of terms related to welding. The terms are arranged in the conventional dictionary letter-by-letter alphabetical sequence. welding THE COMMITTEE on Definitions and Symbols was formed by the American Welding Society to establish standard terms...
Abstract
This article presents a glossary of terms related to welding. The terms are arranged in the conventional dictionary letter-by-letter alphabetical sequence.
Book Chapter
Abbreviations, Symbols, and Tradenames: Welding, Brazing, and Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0005663
EISBN: 978-1-62708-173-3
...DOI: 10.31399/asm.hb.v06.a0005663 Abbreviations and Symbols A austenite; ampere B bainite DFB diffusion brazing bal balance DFW diffusion welding A angstrom bcc body-centered cubic DHC delayed hydride cracking bct body-centered tetragonal diam diameter AA Aluminum Association c edge length...
Book Chapter
Metal and Alloy Powders for Welding, Hardfacing, Brazing, and Soldering
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006079
EISBN: 978-1-62708-175-7
... Abstract Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications...
Abstract
Metals and alloy powders are used in welding, hardfacing, brazing, and soldering applications, which include hardface coatings, the manufacturing of welding stick electrodes and flux-cored wires, and additives in brazing pastes or creams. This article reviews these applications and the specific powder properties and characteristics they require.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001390
EISBN: 978-1-62708-173-3
... or may not be applied to accomplish this. “Diffusion bonding,” a term that can refer to either diffusion brazing or diffusion welding, is now considered to be a nonstandard term. Where diffusion brazing is required, it should be clearly specified, However, in the aerospace industry, diffusion brazing...
Abstract
Diffusion brazing (DFB) is a process that coalesces, or joins, metals by heating them to a suitable brazing temperature at which either a preplaced filler metal will melt and flow by capillary attraction or a liquid phase will form in situ between one faying surface and another. This article discusses the two critical aspects of DFB, namely, a liquid filler metal must be formed and become active in the joint area and extensive diffusion of filler metal elements into the base metal must occur. It schematically illustrates a diffusion process that results in the loss of identity of original brazed joint. The article also discusses the advantages of DFB.
Image
Recommended groove configurations for joining cast irons. (a) Arc welding. ...
Available to PurchasePublished: 01 January 1993
Fig. 7 Recommended groove configurations for joining cast irons. (a) Arc welding. (b) Braze welding. Source: Ref 1
More
Image
Recommended groove configurations for joining cast irons. (a) Arc welding. ...
Available to PurchasePublished: 31 August 2017
Fig. 9 Recommended groove configurations for joining cast irons. (a) Arc welding. (b) Braze welding. Source: Ref 4
More
Book Chapter
Other Fusion Welding Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... to a limited extent in oxyfuel gas welding or brazing of metals with a low melting temperature. Oxygen Only by burning selected fuel gases with high-purity oxygen in a high-velocity flame can the high heat transfer intensity required in OFW be obtained. Oxygen is supplied for oxyfuel gas welding...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... metals to ceramics. Procedures for brazing various materials such as cast irons, steels, stainless steels, heat-resistant alloys, aluminum alloys, titanium alloys, copper alloys, reactive and refractory metals, and carbon and graphite are described in Welding, Brazing, and Soldering , Volume 6...
Abstract
The various methods of furnace, torch, induction, resistance, dip, and laser brazing are used to produce a wide range of highly reliable brazed assemblies. However, imperfections that can lead to braze failure may result if proper attention is not paid to the physical properties of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions of the faying surfaces; postbraze cleaning; and service conditions. This article focuses on the advantages, limitations, sources of failure, and anomalies resulting from the brazing process. It discusses the processes involved in the testing and inspection required of the braze joint or assembly.
Book Chapter
Joining of Oxide-Dispersion-Strengthened Materials
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001467
EISBN: 978-1-62708-173-3
..., namely, gas-tungsten arc welding, gas-metal arc welding, electron-beam and laser-beam welding, resistance welding, furnace brazing, friction welding, and explosion welding. alumina electron-beam welding explosion welding friction welding furnace brazing gas-metal arc welding gas-tungsten arc...
Abstract
Oxide - dispersion - strengthened (ODS) materials utilize extremely fine oxide dispersion for strengthening, such as nickel-base alloys or alumina. The processing techniques employed in the production of ODS alloys produce some entrapped gases, which tend to create porosity during welding that can be rectified by suitable designing considerations. This article discusses certain successful design strategies employed in joining ODS alloys in consideration with the grain structure. It further provides a brief discussion on different welding processes involved in joining ODS materials, namely, gas-tungsten arc welding, gas-metal arc welding, electron-beam and laser-beam welding, resistance welding, furnace brazing, friction welding, and explosion welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005551
EISBN: 978-1-62708-174-0
... an overview of the joining processes, namely, mechanical fastening, integral attachment, adhesive bonding, welding, brazing, and soldering. The article concludes with information on the various aspects of joint design and location that determine the selection of a suitable joining method. adhesive...
Abstract
Joining is key to the manufacture of large or complex devices or assemblies; construction of large and complex structures; and repair of parts, assemblies, or structures in service. This article describes the three forces for joining: physical, chemical, and mechanical. It provides an overview of the joining processes, namely, mechanical fastening, integral attachment, adhesive bonding, welding, brazing, and soldering. The article concludes with information on the various aspects of joint design and location that determine the selection of a suitable joining method.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005345
EISBN: 978-1-62708-187-0
... for repair applications, previously reserved solely using the SMAW and GTAW processes. The GTAW process is associated with producing high-quality welds, but generally requires a high welder skill level. Another option is a hybrid process called braze welding. Braze welding uses filler metals...
Abstract
Repair welding is a necessary operation for most fabricators and can cost more than the price of the original component if performed improperly. This article provides a discussion on the repair welding of castings for ferrous and nonferrous materials. The discussion focuses on the surface preparation, weld repair process selection, joint selection, filler metal selection, weld repair considerations, deposition techniques, postweld heat treatment, and verification of weld repair quality.
Book Chapter
711.0 and 712.0 Natural Aging Casting Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006587
EISBN: 978-1-62708-210-5
... Excellent Excellent Polishing Good Good Excellent Gas welding Fair Fair Fair Arc welding Fair Fair Good Brazing Yes Yes Yes Alloy 712.0 is used for large sand castings and offers good shock resistance and good strength at elevated temperatures ( Table 5 ). This alloy...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and applications of natural aging casting alloys 711.0 and 712.0. The fatigue strength of smooth and notched permanent mold aluminum casting of C712.0-F is illustrated.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006302
EISBN: 978-1-62708-179-5
.... Although the base metal is not melted during brazing and soldering, the molten filler allows interdiffusion between the joined materials and the formation of a sound joint (similar in concept to the interdiffusion that occurs in the fusion zone of a weld). To fill the joint, the liquid filler metal...
Abstract
Brazing and soldering are done at temperatures below the solidus temperature of the base material but high enough to melt the filler metal and allow the liquid filler metal to wet the surface and spread into the joint gap by capillary action. This article discusses the common advantages of both brazing and soldering. It describes the brazing and soldering of cast irons, as well as the selection of brazing filler material. The article discusses various brazing methods: torch brazing, induction brazing, salt-bath brazing, and furnace brazing. It concludes with information on the application examples of brazing of cast iron.
1