Skip Nav Destination
Close Modal
Search Results for
boiler tubes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 253 Search Results for
boiler tubes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2002
Fig. 9 Microstructures of specimens from carbon steel boiler tubes subjected to prolonged overheating below Ac 1 . (a) Voids (black) in grain boundaries and spheroidization (light, globular), both of which are characteristic of tertiary creep. 250×. (b) Intergranular separation adjacent
More
Image
Published: 01 January 2002
Fig. 10 Typical microstructures of 0.18% C steel boiler tubes that ruptured as a result of rapid overheating. (a) Elongated grains near tensile rupture resulting from rapid overheating below the recrystallization temperature. (b) Mixed structure near rupture resulting from rapid overheating
More
Image
Published: 01 January 2002
Fig. 12 Plots of scale thickness versus temperature for two sizes of boiler tubes and two values of heat flux. (a) and (b) The effect of scale thickness on the temperature gradient across the scale. (c) and (d) The effect of scale thickness on the temperature of the metal at the outer surface
More
Image
Published: 01 January 2002
Fig. 20 Hydrogen damage (dark area) in a carbon steel boiler tube. The tube cross section was macroetched with hot 50% hydrochloric acid.
More
Image
Published: 01 January 2000
Fig. 14 Most of the damage in a boiler tube is related to loss of wall thickness due to corrosion. Creep damage occurs late in life due to stress increase.
More
Image
Published: 01 January 2002
Fig. 8 Failure wheel for boiler tube damage mechanisms. Underlined mechanisms are always secondary in this system.
More
Image
Published: 01 January 2002
Fig. 7 Thin-lip rupture in a boiler tube that was caused by rapid overheating. This rupture exhibits a “cobra” appearance as a result of lateral bending under the reaction force imposed by escaping steam. The tube was a 64-mm (2 1 2 -in.) outside-diameter × 6.4-mm (0.250-in.) wall
More
Image
Published: 01 January 2002
Fig. 18 Micrograph of an etched specimen from a carbon steel boiler tube. Decarburization and discontinuous intergranular cracking resulted from hydrogen damage. 250×
More
Image
Published: 01 January 2002
Image
Published: 30 August 2021
Fig. 18 Metallographic mount of failed steel boiler tube sample exhibiting corrosion fatigue. Source: Ref 53
More
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 8 Microstructure of a carbon steel boiler tube subjected to prolonged overheating below Ac 1 showing (a) decomposition of pearlite into ferrite and spheroidal carbides (original magnification: 400×) and (b) spheroidization of carbide and grain-boundary voids characteristic of tertiary creep
More
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 12 Typical microstructures of carbon steel boiler tube that ruptured as a result of rapid overheating. (a) Elongated grains near rupture resulting from rapid overheating below the recrystallization temperature. (b) Mixed structure near rupture resulting from rapid overheating between Ac 1
More
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in Failure of Boilers and Related Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 73 (a) Close-up view of a boiler-tube fracture surface indicating initiation of fatigue cracks from multiple locations on the right-side portion of the tube. Left side is the fast-fracture zone, indicative of failure under overload condition. (b) Ratchet marks indicative of crack initiation
More
Image
Published: 01 January 2005
Fig. 37 Short-term and rapid overheating of a steel boiler tube (reheater, superheater, or similar—source unknown) resulted in a longitudinal “fish-mouth” rupture. The tube had experienced elevated temperatures (455 to >730 °C, or 850 to >1350 °F) where the metal strength is markedly
More
Image
Published: 01 January 2002
Fig. 9 Uniform corrosion of steel tubes in boiler feedwater containing oxygen (O 2 ) and a chelating water-treating chemical
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
... procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
...Abstract Abstract This article discusses some elevated-temperature properties of carbon steels and low-alloy steels with ferrite-pearlite and ferrite-bainite microstructures for use in boiler tubes, pressure vessels, and steam turbines. The selection of steels to be used at elevated...
Abstract
This article discusses some elevated-temperature properties of carbon steels and low-alloy steels with ferrite-pearlite and ferrite-bainite microstructures for use in boiler tubes, pressure vessels, and steam turbines. The selection of steels to be used at elevated temperatures generally involves compromise between the higher efficiencies obtained at higher operating temperatures and the cost of equipment, including materials, fabrication, replacement, and downtime costs. The article considers the low-alloy steels which are the creep-resistant steels with 0.5 to 1.0% Mo combined with 0.5 to 9.0% Cr and perhaps other carbide formers. The factors affecting mechanical properties of steels include the nature of strengthening mechanisms, the microstructure, the heat treatment, and the alloy composition. The article describes these factors, with particular emphasis on chromium-molybdenum steels used for elevated-temperature service. Although the mechanical properties establish the allowable design-stress levels, corrosion effects at elevated temperatures often set the maximum allowable service temperature of an alloy. The article also discusses the effects of alloying elements in annealed, normalized and tempered, and quenched and tempered steels.