1-20 of 536 Search Results for

body-centered cubic systems

Sort by
Book Chapter

Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006544
EISBN: 978-1-62708-183-2
... for all-face-centered cubic, I for innercentered (body-centered) cubic, and R for primitive rhombohedral. Crystal Structure Nomenclature When the seven crystal systems are considered together with the five space lattices, the combinations listed in Table 2 are obtained. These 14 combinations...
Image
Published: 15 January 2021
Fig. 1 Embrittlement and nonembrittlement couples in solid/liquid systems. hcp, hexagonal close-packed; bcc, body-centered cubic; fcc, face-centered cubic. Source: Ref 5 More
Image
Published: 01 August 2013
Fig. 8 Arrhenius plot of diffusivity of various metal systems. bcc, body-centered cubic; hcp, hexagonal close-packed; fcc, face-centered cubic. Adapted from Ref 12 More
Image
Published: 01 January 2005
Fig. 4 Illustration of slip planes, slip directions, and slip systems in hexagonal close-packed (hcp), face-centered cubic (fcc), and body-centered cubic (bcc) structures. Source: Ref 2 More
Image
Published: 31 October 2011
Fig. 10 Example of a calculated ternary phase diagram with tie lines and invariant triangles (three-phase equilibrium) in an Fe-Cr-Ni system at 1700 K. fcc, face-centered cubic; bcc, body-centered cubic More
Image
Published: 01 November 2010
Fig. 10 Example of a calculated ternary phase diagram with tie lines and invariant triangles (three-phase equilibrium) in an Fe-Cr-Ni system at 1700 K. fcc, face-centered cubic; bcc, body-centered cubic More
Image
Published: 01 June 2016
Fig. 8 Titanium-niobium phase diagram. This beta-stabilized system is typical of the beta-isomorphous type. Both titanium and niobium have body-centered cubic crystal structures. Source: Ref 1 More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003735
EISBN: 978-1-62708-177-1
...–1290 fcc → bcc Plutonium-zirconium 5–45 450 840 bcc → fcc (a) Values listed are approximate. (b) bcc, body-centered cubic; fcc, face-centered cubic; hcp, hexagonal close-packed Pure Metals and Congruent Points Diffusion-controlled phase changes in pure metals that can exist...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003084
EISBN: 978-1-62708-199-3
.... Several of the many possible crystal structures possible are so commonly found in metallic systems that they are often identified by three-letter abbreviations that combine the space lattice with crystal system. For example, bcc for body-centered cubic (two atoms per unit cell), fcc is used for face...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003733
EISBN: 978-1-62708-177-1
..., Pt 3 Zn, TiZn 3 B2 FeAl Body-centered cubic AgCd, AgCe, AgLa, AgLi, AgMg, AlCo, AlCu 2 Zn, AuCd, AuMg, AuMn, AuZn, BeCo, BeCu, BeNi, CdCe, CeHg, CeMg, CeZn, CoFe, CoTi, CsCl, CuPd, CuZn, CuZn 3 , FeAl, FeTi, HgLi 2 Tl, HgMn, InNi, LaMg, LiPb, LiTl, MgPr, MgSr, MgTl, MnPt, NiAl, NiTi, RuTa...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... packed (but not closely packed) planes in body-centered cubic crystals. Slip systems in face-centered cubic, body-centered cubic, and hexagonal close-packed structures Table 1 Slip systems in face-centered cubic, body-centered cubic, and hexagonal close-packed structures Crystal structure...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
..., monoclinic; cc, complex cubic. Source: Ref 1 Fig. 2 Arrangement of atoms: (a) face-centered cubic (fcc), (b) hexagonal close-packed (hcp), and (c) body-centered cubic (bcc) crystal structures. Source: Ref 2 Crystals have been classified into seven basic systems (see the appendix...
Book Chapter

Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006229
EISBN: 978-1-62708-163-4
... are body-centered cubic (bcc). The high-temperature β phase is disordered, while the lower-temperature β′ phase is ordered ( Fig. 4 ) These alloys are easy to machine and hot form but are not very amendable to cold forming, because the β′ phase is brittle at room temperature. There is also a rapid...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005647
EISBN: 978-1-62708-174-0
... atm atmospheres (pressure) AWS American Welding Society bal balance bcc body-centered cubic bct body-centered tetragonal C cementite; coulomb C heat capacity CAC carbon arc cutting CAC-A air carbon arc cutting CAD/CAM computer-aided design/computer-aided...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005400
EISBN: 978-1-62708-196-2
... value achievable when both the slip plane normal and the slip direction are oriented at 45° to the uniaxial stress axis. As seen from Eq 1 and indicated in Table 1 , Schmid's law is identical for fcc metals deforming on {111}<110> systems and body-centered cubic metals deforming on {110}<111...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005429
EISBN: 978-1-62708-196-2
... and bulk modulus for 3d, 4d, and 5d transition metals, with the mean error decreasing on average by 50% for both quantities across the series ( Ref 52 ). Other researchers also found that early GGA methods and PW91 correctly produce the correct body-centered cubic ground state for crystalline iron where...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005438
EISBN: 978-1-62708-196-2
... of mechanistic martensite start temperature (M s ). fcc, face-centered cubic; bcc, body-centered cubic. Source: Computational model, Ref 6 After calibration of the aforementioned sublevel models, calibration of the critical driving force, ΔG crit , which includes surface energy and frictional work...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005749
EISBN: 978-1-62708-171-9
...-centered cubic BIL/IBS Belgisch Instituut voor Lastechniek/Institut Belge de la Soudure BN boron nitride BS British Standard Btu British thermal unit CAD/CAM computer-aided design/computer-aided manufacturing cal calorie CAPS controlled atmospheric plasma system...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003802
EISBN: 978-1-62708-177-1
... Knoop hardness bcc body-centered cubic HR Rockwell hardness (requires scale desig- ministration bct body-centered tetragonal NBS National Bureau of Standards nation, such as HRC for Rockwell C hard- nm nanometer ness) No. number NRC Nuclear Regulatory Commission ns nanosecond OD outside diameter...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001759
EISBN: 978-1-62708-178-8
... bodies exhibit some texturing; more difficult is the production of a material without texture. Preferred orientations often alter property behavior, because crystals are inherently anisotropic. For example, Young's modulus varies with direction in most crystals. In face-centered cubic (fcc) crystals...