Skip Nav Destination
Close Modal
Search Results for
body centered-cubic sheets
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 320 Search Results for
body centered-cubic sheets
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation...
Abstract
This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation of complex forming operations, through the use of the finite element method, are also presented.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... may influence the mechanical and metallurgical behavior of metals during deformation. However, twins do not affect mechanical behavior to the same degree that stacking faults do (although an important exception is low-temperature deformation of body-centered cubic metals). Twins generally play only...
Abstract
Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions. It discusses the factors on which the structures developed during plastic deformation depend. These factors include crystal structure, amount of deformation, composition, deformation mode, and deformation temperature and rate. The article illustrates the microstructural features that appear after substantial deformation when revealed through metallographic investigation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005400
EISBN: 978-1-62708-196-2
... value achievable when both the slip plane normal and the slip direction are oriented at 45° to the uniaxial stress axis. As seen from Eq 1 and indicated in Table 1 , Schmid's law is identical for fcc metals deforming on {111}<110> systems and body-centered cubic metals deforming on {110}<111...
Abstract
This article presents the Schmid's law that describes the response of crystal structures to loading. It describes the Taylor model to calculate the uniaxial yield stress of an isotropic face-centered cubic aggregate in terms of critical resolved shear stress. The article discusses the stress-based approach of the Bishop and Hill procedure to directly find stress states that could simultaneously operate at least five independent slip systems. It presents ways to find isostress or lower-bound yield loci for sheets having single-crystal orientation.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001759
EISBN: 978-1-62708-178-8
... bodies exhibit some texturing; more difficult is the production of a material without texture. Preferred orientations often alter property behavior, because crystals are inherently anisotropic. For example, Young's modulus varies with direction in most crystals. In face-centered cubic (fcc) crystals...
Abstract
Crystallographic texture measurement and analysis is an important tool for correlating material properties with microstructural features. This article describes the general approach to quantifying crystallographic texture, namely, the collection of statistical data from grain measurements and subsequent analysis based on Euler plots (i.e., pole figures), orientation distribution functions, and stereographic projections. Using detailed illustrations and examples, it explains the significance of preferred crystallographic orientations and their influence on properties and material behavior. The article also discusses sample selection and preparation as well as the challenges and limitations of various methods.
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.9781627081818
EISBN: 978-1-62708-181-8
Book Chapter
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005749
EISBN: 978-1-62708-171-9
...-centered cubic BIL/IBS Belgisch Instituut voor Lastechniek/Institut Belge de la Soudure BN boron nitride BS British Standard Btu British thermal unit CAD/CAM computer-aided design/computer-aided manufacturing cal calorie CAPS controlled atmospheric plasma system...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003254
EISBN: 978-1-62708-176-4
..., a crystal lattice is formed (see Fig 2 .). Although the arrangement of atoms in space can be of fourteen different types (or Bravais lattices), most metals have face-centered cubic (fcc) (e.g., nickel, aluminum, copper, lead), body-centered cubic (bcc) (e.g., iron, niobium, tungsten, molybdenum...
Abstract
Mechanical properties are described as the relationship between forces (or stresses) acting on a material and the resistance of the material to deformation (i.e., strains) and fracture. This article briefly introduces the typical relationships between metallurgical features and the mechanical behavior of metals. It explains the deformation and fracture mechanisms of these metals. Typical properties measured during mechanical testing related to these deformation mechanisms and the microstructures of metals are discussed. The article reviews the various factors that affect the deformation response of the metal: strain rate, temperature, nature of loading, stress-corrosion cracking, and presence of notches.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.9781627081979
EISBN: 978-1-62708-197-9
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.9781627081887
EISBN: 978-1-62708-188-7
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005684
EISBN: 978-1-62708-198-6
...Abstract Abstract Physically, tantalum is a dark, blue-gray, lusterless metal that exists in two crystalline forms: an alpha-phase with a body-centered cubic structure, and a brittle beta-phase with a tetragonal orientation. This article tabulates the physical and material properties...
Abstract
Physically, tantalum is a dark, blue-gray, lusterless metal that exists in two crystalline forms: an alpha-phase with a body-centered cubic structure, and a brittle beta-phase with a tetragonal orientation. This article tabulates the physical and material properties of tantalum. It discusses the use of tantalum in medical electronics and the advantage of tantalum over stainless steel. The article describes the manufacturing and medical applications of tantalum foam.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005586
EISBN: 978-1-62708-170-2
... balance BARE biased activated reactive evaporation bcc body-centered cubic bct body-centered tetragonal Bé Baumé (specific-gravity scale) BUE built-up edge c edge length in crystal structure; speed of light; specific heat; constant; conductivity C...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.9781627081962
EISBN: 978-1-62708-196-2
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005181
EISBN: 978-1-62708-186-3
... deviators (see below). Recommended values for the exponent a are 6 and 8 for body-centered cubic and face-centered cubic metals, respectively. Yield condition σ ¯ = { φ 2 } 1 / a = h ( ε ¯ ) Work-equivalent effective strain ( σ ), defined incrementally...
Abstract
This article presents formulas for calculating the following: effective stress, strain, and strain rate (isotropic material) in arbitrary coordinates and in principal coordinates; compression testing, tension testing, and torsion testing of isotropic material; and Barlat's anisotropic yield function Yld2000-2d for plane-stress deformation of sheet material. It also contains formulas related to flat (sheet) rolling, conical-die extrusion, wire drawing, bending, and deep drawing of cups from sheet metal.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003744
EISBN: 978-1-62708-177-1
...) {001}⟨110⟩ 12° from RD hcp Same as deformation texture ortho, U {103}⟨010⟩ fcc, face-centered cubic; bcc, body-centered cubic; hcp, hexagonal close-packed; hex, hexagonal; ortho, orthogonal; tet, tetragonal; rhom, rhombohedral; ND, normal direction; RD, rolling direction; TD, transverse...
Abstract
This article describes the mechanisms involved in creating texture for various metal-fabrication processes, namely, solidification, deformation, recrystallization and grain growth, thin-film deposition, and imposition of external magnetic fields. It discusses two experimental and analytical approaches for experimental determination of texture: one using classical diffraction and pole figure measurement techniques and the other using individual orientation measurements. The article also provides information on microtexture, grain-boundary character, and texture gradients. It concludes with information on texture evolution through modeling.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006660
EISBN: 978-1-62708-213-6
...-cobalt body-centered cubic (bcc) alloy that had been used to make an older custom transformer that needed refurbishing. A cross section of the transformer core was metallographically prepared, including vibratory polishing as a last step. This produced a sample that was suitable for EBSD. During mounting...
Abstract
The electron backscatter diffraction (EBSD) technique has proven to be very useful in the measurement of crystallographic textures, orientation relationships between phases, and both plastic and elastic strains. This article focuses on backscatter diffraction in a scanning electron microscope and describes transmission Kikuchi diffraction. It begins with a discussion on the origins of EBSD and the collection of EBSD patterns. This is followed by sections providing information on EBSD spatial resolution and system operation of EBSD. Various factors pertinent to perform an EBSD experiment are then covered. The article further describes the processes involved in sample preparation that are critical to the success or usefulness of an EBSD experiment. It also discusses the applications of EBSD to bulk samples and the development of EBSD indexing methods.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.9781627081856
EISBN: 978-1-62708-185-6
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... b Burgers vector b crystal lattice length along the b axis B magnetic flux density bal balance or remainder bcc body-centered cubic BE backscattered electron BF bright-field (illumination) BIV best image voltage c crystal...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005167
EISBN: 978-1-62708-186-3
... but also reduces ductility. The ductility is lowest at approximately 650 °C (1200 °F) and then increases with temperature. This reduced ductility is caused by strain aging, which is characteristic of body-centered cubic metals. Fig. 2 Effect of temperature on strength and elongation of vacuum...
Abstract
This article describes the formability and surface contamination of the refractory metals such as niobium, tantalum, molybdenum, tungsten, and titanium-zirconium-molybdenum alloys. It reviews the factors that affect mechanical properties and formability during rolling and heat treatment. The effect of temperature on the formability of refractory metals is discussed. The article provides a description of the forming methods of sheet and preformed blanks using refractory metals. It also discusses the types of lubricants, including oils, soaps, waxes, silicones, graphite, and molybdenum disulphide, used in the forming of refractory metals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1