Skip Nav Destination
Close Modal
Search Results for
blended elemental compacts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 58 Search Results for
blended elemental compacts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003053
EISBN: 978-1-62708-200-6
... Abstract Ceramic-forming processes usually start with a powder which is then compacted into a porous shape, achieving maximum particle packing density with a high degree of uniformity. This article compares and contrasts several forming processes, including mechanical consolidation, dry...
Abstract
Ceramic-forming processes usually start with a powder which is then compacted into a porous shape, achieving maximum particle packing density with a high degree of uniformity. This article compares and contrasts several forming processes, including mechanical consolidation, dry pressing, cold isostatic pressing, slip casting, tape casting, roll compaction, extrusion, and injection molding. It describes the advantages, equipment and tooling, and material requirements of green machining, the machining of ceramics in an unfired state with the intent of producing parts as close to as possible to their final shape. The article also provides useful information on drying methods, shrinkage, and defects as well as the removal of organic processing aids such as dispersants, binders, plasticizers, and lubricants.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003009
EISBN: 978-1-62708-200-6
... sulfones, polyethylene terephthalates, thermoplastic polyimides, liquid crystal polymers, polyphenylene ether blends, polyphenylene sulfides, and polysulfones. acetals advanced thermoplastics applications commercial forms family characteristics fluoropolymers ionomers liquid crystal polymers...
Abstract
Advanced thermoplastics are stiff, moldable plastics that compete with traditional engineering thermoplastics and thermosets owing to their good tensile, compressive, impact, and shear strength, electrical properties, and corrosion resistance. This article discusses commercial forms, family characteristics, properties and applications of the following advanced thermoplastics: homopolymer and copolymer acetals, fluoropolymers, ionomers, polyamides, polyamide-imides, polyarylates, polyketones, polyaryl sulfones, polybutylene terephthalates, polycarbonates, polyether-imides, polyether sulfones, polyethylene terephthalates, thermoplastic polyimides, liquid crystal polymers, polyphenylene ether blends, polyphenylene sulfides, and polysulfones.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003112
EISBN: 978-1-62708-199-3
.... For example, prealloyed powders generally produce stronger and tougher parts than do powders mixed from elemental metal powders, assuming that the same compacted density is obtained with each powder. The variations in the P/M process, such as compacting pressure and sintering temperature, also affect...
Abstract
Iron powders are the most widely used powder metallurgy (P/M) material for structural parts. This article reviews low to medium density iron and low-alloy steel parts produced by the pressing and sintering technology. It explains different powder production methods, including Hoeganaes process, Pyron process, atomization of liquid metal, thermal decomposition and the electrodeposition process for carbonyl and electrolytic iron powders. It describes the types of compaction and sintering, explaining their effects of processing with designations. Further, the article deals with the mechanical and physical properties of ferrous P/M materials, which may depend on certain factors, namely microstructure, porosity, density, infiltration, re-pressing, chemical composition, and heat treatment.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
... improving compacting properties, lubricant addition for compacting grade powders, mixing of different powders for premixes, and blending of powders and powder mixes to homogenize their various components. These treatments are usually performed by the powder producer. The quality of these treatments can...
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005244
EISBN: 978-1-62708-187-0
..., and additives used in coremaking. It discusses the curing of compacted cores by core baking and the hot box processes. The article provides an overview of core coatings, assembling and core setting, coring of tortuous passages, and cores in permanent mold castings and investment castings. It also...
Abstract
Cores are separate shapes of sand that are placed in the mold to provide castings with contours, cavities, and passages that are not otherwise practical or physically obtainable by the mold. This article describes the basic principles of coremaking and the types of core sands, binders, and additives used in coremaking. It discusses the curing of compacted cores by core baking and the hot box processes. The article provides an overview of core coatings, assembling and core setting, coring of tortuous passages, and cores in permanent mold castings and investment castings. It also discusses the design considerations in coremaking to eliminate cores and compares coring with drilling.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005924
EISBN: 978-1-62708-166-5
... Abstract Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements...
Abstract
Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements, including cooling systems, power supplies, heat stations, work handling fixtures, induction or work coils, and quench systems. The article discusses the influence of system elements on induction heat treating system design. It also deals with the general theory, types, and applications of induction coils.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005331
EISBN: 978-1-62708-187-0
... Abstract This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes various means of structural control, namely, chemistry control, control of element ratios based on the...
Abstract
This article begins with a discussion on the effects of alloying and impurity elements on the properties of aluminum cast alloys and their chemical compositions. It describes various means of structural control, namely, chemistry control, control of element ratios based on the stoichiometry of intermetallic phases, and control of solidification conditions. The article discusses the modification and grain refinement of aluminum-silicon alloys by the use of modifiers and refiners to influence eutectic and hypereutectic structures in aluminum-silicon alloys. It provides information on the foundry alloys for specific casting applications. The article concludes with a discussion on the heat treatment practices and properties of aluminum casting alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003041
EISBN: 978-1-62708-200-6
... Abstract Autoclave molding is a process used to impart a controlled heat and pressure cycle cure to a layup. This article describes the materials used for preparing a layup, including peel ply, separator, bleeder, barrier, breather, dam, and vacuum bag. It describes the major elements and...
Abstract
Autoclave molding is a process used to impart a controlled heat and pressure cycle cure to a layup. This article describes the materials used for preparing a layup, including peel ply, separator, bleeder, barrier, breather, dam, and vacuum bag. It describes the major elements and functions of an autoclave system, including pressure vessel, gas stream heating and circulation sources, gas stream pressurizing systems, vacuum systems, control systems, and loading systems. The article includes information about modified autoclaves for specialized applications and safety practices in autoclave molding. It also describes the tooling configuration and type of tooling which includes aluminum and steel tooling, electroformed nickel tooling, graphite-epoxy tooling, and elastomeric tooling.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003144
EISBN: 978-1-62708-199-3
... alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed...
Abstract
This article provides information on the properties, compositions, designations, and applications of zinc and zinc alloys. It discusses the principal areas of application of zinc: in coatings and anodes for corrosion protection of irons and steels; in zinc casting alloys; as an alloying element in copper, aluminum, magnesium, and other alloys; in wrought zinc alloys; and in zinc chemicals. The zinc coating applications of hot dip galvanizing, electrogalvanizing, plating, and thermal spray are presented. The use of zinc alloys in both gravity and pressure die castings is discussed as well as the three main types of wrought products: flat-rolled products, wire-drawn products, and extruded and forged products. The article also provides a section on the corrosion resistance of zinc and zinc coatings in various atmospheres.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003006
EISBN: 978-1-62708-200-6
... this basic structure permits the engineers to understand which polymers may be acceptable for a certain application, and which may not. There are various possible classification schemes for polymers. Typical classification categories include polymerization process, chemical elements that make up the...
Abstract
This article outlines the fundamentals of polymer science and emphasizes the aspects that are necessary and useful to applications of engineering plastics. The basic structure of polymers influences the properties of both polymers and the plastics made from them. An understanding of this basic structure permits the engineers to understand which polymers may be acceptable for a certain application, and which may not. There are various possible classification schemes for polymers. Typical classification categories include polymerization process, chemical elements that make up the monomer, or crystalline versus noncrystalline structure. The article describes the various aspects of chemical structure that are important to an understanding of polymer properties and, thus, affect eventual end uses. It discusses different types of names assigned to polymers. The article details the aspects of polymer structure and examines the properties of polymers and the way they are altered by structure.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
... beryllium bronzes. Alloy powders are produced by one of two methods: Preblending copper powders with other elemental powders such as tin, zinc, or nickel Prealloying during powder production Copper and copper alloy powders are generally cold compacted in closed dies with top and bottom...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006649
EISBN: 978-1-62708-213-6
.... Increasing the compact density generally provides increased green strength, but the powder particle shape and morphology greatly affect the green strength. Table 7 presents the microhardness values, compressibility, and green strength of various elemental iron powders, including the MHV of iron oxides for...
Abstract
This article uses metal and alloy powders as examples to briefly discuss how to perform the characterization of powders. It begins by reviewing some of the techniques involved in the sampling of powders to ensure accurate characterization. This is followed by a discussion on the important properties to characterize powders, namely the particle size, surface area, density, porosity, particle hardness, compressibility, green strength, and flowability. For characterization of powders, both individual particles and bulk powders are used to evaluate their physical and chemical properties. The article also discusses the important characteristics and compositions of powder as well as impurities that directly affect powder properties. It ends with a description of the ignition and dust-explosion characteristics of organic and metal powders.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005243
EISBN: 978-1-62708-187-0
... include: The molding material costs are low. It lends itself readily to high-production automatic molding. Wood or plastic patterns can be used in hand molding, sand slinging, manual jolt, or squeeze machine molding. High-pressure molding produces a well-compacted mold, which can produce...
Abstract
Green sand molding and chemically bonded sand molding are considered to be the most basic and widely used mold-making processes. This article describes the sand system formulation, preparation, mulling, mold fabrication, and handling of green sand molds. It lists the advantages and disadvantages of green sand molding. The article discusses the primary control parameters for the sand system formulation. It describes two basic types of green sand molds such as flask molds and flaskless molds. The article provides a discussion on molding problems including springback and expansion defects. It discusses a variety of sand reclamation systems, including wet washing/scrubbing and thermal-calcining/thermal-dry scrubbing combinations.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005354
EISBN: 978-1-62708-187-0
... mixtures in the no-bake system typically have good flowability, although some compaction or vibration may be needed ( Fig. 1 ). Nonetheless, the extent of required compaction is less than that required in green sand molding. This may allow more economical options in patternmaking with wood and, in some...
Abstract
No-bake sand molds are based on curing of inorganic or organic binders with either gaseous catalysts or liquid catalysts. This article reviews the major aspects of no-bake sand bonding in terms of coremaking, molding methods, and sand processing. It discusses the points to be noted in handling sand-resin mixtures for no-bake molds or cones and lists some advantages of no-bake air-set cores and molds. The article describes the process procedures, advantages, and disadvantages of gas curing and air-setting hardening of sodium silicates. It discusses the members of the air-setting organic binders, namely, furan no-bake resins, phenolic no-bake resins, and urethanes. The article provides an overview of gas-cured organic binders. It also illustrates the three commercial systems for sand reclamation: wet reclamation systems, dry reclamation systems, and thermal reclamation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003129
EISBN: 978-1-62708-199-3
... alloys for structural applications continues because P/M processing provides much finer and homogeneous microstructures, better mechanical properties, and near-net shape parts producibility for aluminum alloys in comparison with ingot metallurgy (I/M). In addition to the conventional blending and...
Abstract
This article provides an overview of the composition and properties of powder metallurgy (P/M) aluminum powders for pressed and sintered parts. It includes the steps involved in the processing of high-performance P/M alloys. The article describes the classes of high-performance P/M alloys, including corrosion-resistant alloys (stress-corrosion cracking), elevated-temperature alloys, and low density/high-stiffness alloys.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005926
EISBN: 978-1-62708-166-5
... controlled, furnace atmospheres provide the source of elements in some heat treating processes, surface cleansing of parts being treated in other processes, and a protective environment to guard against adverse effects of air when metals are exposed to elevated temperatures in still other processes. This...
Abstract
This article provides a detailed discussion on the types of furnace atmospheres required for heat treating. These include generated exothermic-based atmospheres, generated endothermic-based atmospheres, generated exothermic-endothermic-based atmospheres, generated dissociated-ammonia-based atmospheres, industrial gas nitrogen-base atmospheres, argon atmospheres, and hydrogen atmospheres. Atmospheres for backfilling, partial pressure operation, and quenching in vacuum are also discussed. Furnace atmospheres constitute four major groups of safety hazards in heat treating: fire, explosion, toxicity, and asphyxiation. The article reviews the fundamentals of principal gases and vapors. It describes how the evaluation of the atmospheric requirements of heat treating furnaces is influenced by factors such as cost of operation and capital investment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003157
EISBN: 978-1-62708-199-3
... those in the silver-base category. Blended powders of the correct composition are compacted to the required shape and then sintered. Afterward, the material is further densified by a second pressing (repressing). Sometimes the properties can be modified by a second sintering or annealing. The...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article describes the property requirements such as electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties of make-break arcing contacts. The article also focuses on brush contact materials and their interdependence factors for sliding contacts. In addition, the article discusses the properties, manufacturing methods, and applications of electrical contact materials, including wrought materials such as copper metals, silver metals, gold metals, precious metal overlays, tungsten, molybdenum, and aluminum, and composite materials. It concludes by discussing the composite manufacturing methods such as infiltration, press-sinter, press-sinter-repress process, press-sinter-extrude process, internal oxidation, and preoxidized-press-sinter-extrude process, and coprecipitation.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003141
EISBN: 978-1-62708-199-3
.... At each of these steps, the mechanical and physical properties of the titanium in the finished shape may be affected by any one of several factors, or by a combination of factors. Among the most important are (a) amounts of specific alloying elements and impurities, (b) melting process used to make...
Abstract
Titanium metal passes through three major steps during processing from ore to finished product: reduction of titanium ore to sponge (porous form), melting of sponge and scrap to form ingot, and remelting and casting into finished shape. This article describes primary fabrication, including all operations that convert ingot into general mill products, such as billet, bar, plate, sheet, strip, tube, and wire. The section on secondary fabrication describes processes such as die forging, extrusion, hot and cold forming, machining, chemical milling, and joining. The article presents a short note on powder metallurgy products of titanium. Casting processes and properties are covered in the final section.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005202
EISBN: 978-1-62708-187-0
... melting. The electrodes for making titanium ingots are compacted aggregates (compact or briquettes) of sponge and alloy elements, including both master melt and elemental materials. For commercially pure titanium, the sponge is compacted, and the electrode is melted with appropriate oxygen control. When...
Abstract
The vacuum arc remelting (VAR) process is widely used to improve the cleanliness and refine the structure of standard air melted or vacuum induction melted (VIM) ingots and also used in the triplex production of superalloys. This article illustrates the VAR process and the capabilities and variables of the VAR process. It also presents a discussion on the melt solidification, resulting structure, and ingot defects. The article concludes with a discussion on VAR process of superalloy, and titanium and titanium alloy.