Skip Nav Destination
Close Modal
Search Results for
blackheart malleable iron
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-17 of 17 Search Results for
blackheart malleable iron
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006347
EISBN: 978-1-62708-179-5
...Abstract Abstract Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. There are two basic types of malleable iron: blackheart and whiteheart. This article focuses on the blackheart...
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. There are two basic types of malleable iron: blackheart and whiteheart. This article focuses on the blackheart malleable iron and discusses the chemical composition of malleable iron. A summary of mechanical properties and specifications of malleable iron castings is presented in a table. The article also reviews the mechanical properties of ferritic malleable iron and pearlitic and martensitic-pearlitic malleable irons.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001005
EISBN: 978-1-62708-161-0
... iron: blackheart and whiteheart. This article considers only the blackheart type and describes the metallurgical factors of malleable iron. It discusses the mechanical properties of pearlitic and martensitic malleable irons. The article provides additional information on the properties and heat...
Abstract
Malleable iron possesses considerable ductility and toughness because of its combination of nodular graphite and a low-carbon metallic matrix. The desired formation of temper carbon in malleable irons has two basic requirements. First, graphite should not form during the solidification of the white cast iron, and second, graphite must also be readily formed during the annealing heat treatment. These two metallurgical requirements influence the useful compositions of malleable irons and the melting, solidification, and annealing procedures. There are two basic types of malleable iron: blackheart and whiteheart. This article considers only the blackheart type and describes the metallurgical factors of malleable iron. It discusses the mechanical properties of pearlitic and martensitic malleable irons. The article provides additional information on the properties and heat treatment of ferritic, pearlitic, and martensitic malleable irons. The article lists some of the typical applications of malleable iron castings.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006309
EISBN: 978-1-62708-179-5
... to produce temper carbon involves heating a white cast iron for an extended period of time (up to about 60 h) at a temperature of 960 °C (1760 °F). Most of the malleable iron that is produced by this technique is called blackheart malleable iron, while some malleable iron (called whiteheart malleable iron...
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules instead of flakes, as in gray iron, or small graphite spherulites, as in ductile iron. This article discusses the production of malleable iron based on the metallurgical criteria: to produce solidified white iron throughout the section thickness; and to produce the desired graphite distribution (nodule count) upon annealing. It describes the induction heating and quenching or flame heating and quenching for surface hardening of fully pearlitic malleable iron. Laser and electron beam techniques also have been used for hardening selected areas on the surface of pearlitic and ferritic malleable iron castings that are free from decarburization.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005969
EISBN: 978-1-62708-168-9
... (depending on the cooling rate after annealing).The temper carbon is not truly spherical (as in ductile iron) but consists of irregularly shaped aggregates ( Fig. 1 ). Most of the malleable iron is produced by this technique and is called blackheart malleable iron, while some malleable iron (called white...
Abstract
This article focuses on heat treatment of malleable and compacted-graphite irons to produce ferritic and pearlitic malleable irons. It describes the heat treatment cycles of malleable iron, including martempering, tempering, bainitic heat treatment, and surface hardening. The article provides information on the mechanical and physical properties of compacted-graphite irons, which are determined by the graphite shape and the pearlite/ferrite ratio.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0009206
EISBN: 978-1-62708-161-0
... in the decomposition of Fe3C and the formation of temper graphite. The basic solid state reaction is: (Eq 7) Fe 3 C → Austenite + Gr Most of the malleable iron is produced by this technique and is called blackheart malleable iron. The final microstructure consists of graphite in a matrix...
Abstract
This article discusses the classification schemes for cast irons and describes the characteristics of major categories, including gray iron, white iron, ductile iron, compacted graphite iron, mottled iron, malleable iron, and austempered ductile iron. It also discusses some of the basic principles of cast iron metallurgy. When discussing the metallurgy of cast iron, the main factors of influence on the structure include chemical composition, cooling rate, liquid treatment, and heat treatment. In terms of commercial status, cast irons can be classified as common cast irons and special cast irons. Special cast irons differ from the common cast irons mainly in the higher content of alloying elements. Alloying elements can be added in common cast iron to enhance some mechanical properties. They influence both the graphitization potential and the structure and properties of the matrix.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003110
EISBN: 978-1-62708-199-3
..., pearlitic malleable, and martensitic malleable irons. There are two types of ferritic malleable iron, “blackheart,” and “whiteheart.” Only the blackheart type is produced in the United States. This material has a matrix of ferrite with interspersed nodules of temper carbon. “Cupola malleable iron...
Abstract
Malleable iron is a type of cast iron that has most of its carbon in the form of irregularly shaped graphite nodules. This article tabulates the typical composition of malleable iron and specifications, and applications of malleable iron castings. It discusses the metallurgical control of malleable irons with emphasis on its composition and heat treatment. The article provides information on the specifications and mechanical properties of different types of malleable irons, such as ferritic, pearlitic, and martensitic malleable irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
..., including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way...
Abstract
This article discusses criteria that can be used for the classification of cast iron: fracture aspect, graphite shape, microstructure of the matrix, commercial designation, and mechanical properties. It addresses the main factors of influence on the structure of cast iron, including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way as to produce a white as-cast structure and to allow for fast annealing times. Some typical compositions of malleable irons are presented in a table. The article concludes with information on special cast irons.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002399
EISBN: 978-1-62708-193-1
...Abstract Abstract This article discusses the fatigue and fracture behavior of various types of cast iron, such as gray iron, ductile iron, malleable iron, compacted graphite iron, and white iron, as a function of chemical composition, matrix microstructure, and graphite morphology. cast...
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006333
EISBN: 978-1-62708-179-5
... of Europe and foresaw a potential market for such a material; he started a series of experiments to find out how to produce malleable iron. Because of the chemical composition of the pig iron used, Boyden found the fractures of his specimens “black and grey” (blackheart) because of the presence of free...
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. This article discusses melting practices such as batch cold melting and duplexing, and their control mechanisms. It schematically illustrates the microstructure of annealed ferritic malleable iron, which is characterized by microstructures consisting of uniformly dispersed fine particles of free carbon in a matrix of ferrite or tempered martensite. The article describes the digital solidification analysis technology, simulation technologies, and smart engineering for the production of malleable iron. It provides information on the applications of ferritic and pearlitic malleable irons.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005326
EISBN: 978-1-62708-187-0
... for such a material; he started a series of experiments to find out how to produce malleable iron. Because of the chemical composition of the pig iron used, Boyden found the fractures of his specimens “black and grey” (blackheart) because of the presence of free carbon after the heat treatment process. In 1831, he...
Abstract
Malleable iron is a cast ferrous metal that is initially produced as white cast iron and is then heat treated to convert the carbon-containing phase from iron carbide to a nodular form of graphite called temper carbon. This article provides a discussion on the melting practices, heat treatment, microstructure, production technologies, mechanical properties, and applications of ferritic, pearlitic, and martensitic malleable irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006324
EISBN: 978-1-62708-179-5
... … 42 Malleable iron 22 Blackheart ferritic 2.51 1.01 0.56Mn, 0.183S, 0.047P 49 46 65 23 2.51 1.06 1.16Mn, 0.159S, 0.0.45P 44 41 65 Alloy iron 24 Ni-Resist D2 (ductile) … … Austenitic 18–22Ni 13.4 … 11 25 Nicrosilal (lamellar graphite) 1.81 6.42...
Abstract
This article discusses the influence of microstructure and chemical composition on the physical properties of cast iron. The physical properties include density, thermal expansion, thermal conductivity, specific heat, electrical conductivity, magnetic properties, and acoustic properties. The article describes the properties of liquid iron in terms of surface energy, contact angles, and viscosity. The conductive properties such as thermal and electrical conductivity, of the main metallographic phases present in cast iron are presented in a table. The article discusses the magnetic properties of cast iron in terms of magnetic intensity, magnetic induction, magnetic permeability, remanent magnetism, coercive force, and hysteresis loss. It concludes with a discussion on the acoustic properties of cast iron.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005322
EISBN: 978-1-62708-187-0
... ductility), which can be tempered (high strength and toughness). Standard or ferritic malleable iron, also called blackheart ( Fig. 4 ) (ASTM A 47, Ref 1 ), possesses a matrix of ferrite, while pearlitic malleable iron (ASTM A 220, Ref 2 ) matrices are typically tempered martensite or, less commonly...
Abstract
The term cast iron designates a group of materials that contain more than one constituent in their microstructure due to excess carbon that result in unique characteristics such as the fracture appearance and graphite morphology. This article discusses the classification of cast iron and the various metallurgical aspects, such as the composition, alloying element, solidification, and graphite morphologies, of different types of cast iron. It describes the physical properties for various cast irons and the influence of microstructure and chemical composition on each property. The article provides a detailed account on thermal properties, conductive properties, magnetic properties, and acoustic properties of cast iron. It also examines heat treatment, namely, stress relieving, annealing, normalizing, through hardening, and surface hardening. The article presents a discussion on the welding, machining and grinding, and coating of the types of cast iron.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001435
EISBN: 978-1-62708-173-3
... in the furnace is of an oxidizing nature, some of the carbon will be oxidized, producing a white-heart malleable iron that is considered weldable. If the atmosphere is of a reducing nature, the entire amount of carbon is retained, and the material is a blackheart malleable iron, considered unweldable...
Abstract
Cast iron can be described as an alloy of predominantly iron, carbon, and silicon. This article discusses the classification of cast irons, such as gray cast iron, white cast iron, malleable cast iron, ductile cast iron, and compacted graphite iron. It reviews the various special techniques, such as groove face grooving, studding, joint design modifications, and peening, for improving the strength of a weld or its fitness for service. The article discusses the need for postweld heat treatment that depends on the condition of the casting, possible distortion during subsequent machining, the desired finish of the machined surfaces, and prior heat treatment. It describes various welding process for welding cast irons, including oxyfuel welding, braze welding, shielded metal arc welding, gas metal arc welding, and gas-tungsten arc welding.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005186
EISBN: 978-1-62708-187-0
... by the crucible process at historic Valley Forge Foundry. 1825—Aluminum, the most abundant metal in the Earth's crust, is isolated from aluminum chloride by Denmark's Hans Oerstad. 1830s—Seth Boyden of Newark, N.J., produces the first blackheart malleable iron in the United States. 1832—Nickel-bronze...
Abstract
Casting is one of the most economical and efficient methods for producing metal parts. In terms of scale, it is well suited for everything from low-volume, prototype production runs to filling global orders for millions of parts. Casting also affords great flexibility in terms of design, readily accommodating a wide range of shapes, dimensional requirements, and configuration complexities. This article traces the history of metal casting from its beginnings to the current state, creating a timeline marked by discoveries, advancements, and influential events. It also lists some of the major markets where castings are used.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001341
EISBN: 978-1-62708-173-3
... of ledeburite formed and the width of the HAZ. Fig. 13 Discontinuous white iron colonies obtained in the HAZ of blackheart malleable iron welded using a “quench welding” technique with a nickel-base electrode. 180×. Source: Ref 21 Fusion Zone of a Single-Pass Weld Transformations in Single-Pass...
Abstract
Solid-state transformations occurring in a weld are highly nonequilibrium in nature and differ distinctly from those experienced during casting, thermomechanical processing, and heat treatment. This article focuses on welding metallurgy of fusion welding of steels and highlights the fundamental principles that form the basis of many of the developments in steels and consumables for welding. Examples in the article are largely drawn from the well-known and relatively well-studied case of ferritic steel weldments to illustrate the special physical metallurgical considerations brought about by the weld thermal cycles and by the welding environment. The article provides information on welds in other alloy systems such as stainless steels and aluminum-base, nickel-base, and titanium-base alloys.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005613
EISBN: 978-1-62708-174-0
... it is possible to limit both the amount of ledeburite formed and the width of the HAZ. Fig. 18 (a) Schematic showing the location of the partially melted zone and associated phase diagram for a cast iron. Adapted from Ref 7 . (b) White iron colonies obtained in the heat-affected zone of blackheart...
Abstract
Solid-state transformations occurring in a weld are highly nonequilibrium in nature and differ distinctly from those experienced during casting, thermomechanical processing, and heat treatment. This article provides a description of the special factors affecting transformation behavior in a weldment. It reviews the heat-affected and fusion zones of single-pass and multi-pass weldments. The article also includes a discussion on the welds in alloy systems, such as stainless steels and aluminum-base, nickel-base, and titanium-base alloys.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003747
EISBN: 978-1-62708-177-1
... by ensuring that the specimen is continuously flooded with liquid coolant during abrasive machining, particularly those involving high speeds. Dry, mechanized abrasion processes should be avoided. Abrasion Damage in Gray Iron Cast irons are an important group of alloys for which a purpose...
Abstract
This article illustrates how objective experiments and comparisons can be used to develop surface preparation procedures for metallographic examination of structural features of metals. These procedures are classified as machining, grinding and abrasion, or polishing. The article describes the abrasion artifacts in austenitic steels, zinc, ferritic steels, and pearlitic steels, and other effects of abrasion damages, including flatness of abraded surfaces and embedding of abrasive. Different polishing damages, such as degradation of etching contrast and scratch traces, are reviewed. The article explains the final-polishing processes such as skid polishing, vibratory polishing methods, etch-attack and electromechanical polishing, and polishing with special abrasives. An overview of special polishing techniques for unusual materials such as very hard and very soft materials is provided. The article concludes with a discussion on semiautomatic preparation procedures, providing information on procedures based on the use of diamond abrasives charged in a carrier paste and in a suspension.