Skip Nav Destination
Close Modal
By
Luther M. Gammon, Robert D. Briggs, John M. Packard, Kurt W. Batson, Rodney Boyer ...
Search Results for
black etchants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 139 Search Results for
black etchants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006351
EISBN: 978-1-62708-179-5
... discusses the use of black and white etchants and lists the compositions of abrasion-resistant cast irons according to ASTM A532/A532M in a table. abrasion-resistant cast iron black etchants cast iron graphite morphology high-alloy cast iron microstructure white etchants LIKE OTHER CAST...
Abstract
This article describes two contemporary approaches for preparing cast iron specimens with a wide range of phases and constituents as well as different graphite morphologies. It introduces concepts and preparation materials that enable metallographers to shorten the process while producing better, more consistent results. Recommended procedures to prepare cast irons and examples of high-alloy cast iron microstructures revealed using a variety of etchants are presented. Several etchants are used to reveal the matrix microstructure, depending on the alloy content. The article discusses the use of black and white etchants and lists the compositions of abrasion-resistant cast irons according to ASTM A532/A532M in a table.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
... Abstract This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other...
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006342
EISBN: 978-1-62708-179-5
.... If the black-and-white etchants are inadequate for positive identification of the iron microstructures, other procedures must be used, such as selective color etching. Examples of color etchants are listed in Table 4 . The reagents referred to as tint etchants are usually acidic solutions with either water...
Abstract
The metallographic specimen preparation process for microstructural investigations of cast iron specimens usually consists of five stages: sampling, cold or hot mounting, grinding, polishing, and etching with a suitable etchant to reveal the microstructure. This article describes the general preparation of metallographic specimens and the methods of macroscopic and microscopic examination. Usually, gray-scale (black-and-white) metallography is sufficient for microstructural analysis of cast irons. The article discusses the use of color metallography of gray irons and ductile irons. It also presents application examples of color metallography.
Image
Published: 01 December 2004
Fig. 39 Results from different etchants in specimen preparation of 18% Ni maraging steel (300 CVM). Solution treated 1 h at 815 °C (1500 °F), surface activated, and gas nitrided 24 h at 440 °C (825 °F). (a) Etched with nital, but this etchant does not clearly reveal the nitrided microstructure
More
Image
Published: 01 December 2004
Fig. 5 Typical examples of aluminum-magnesium commercial alloys. (a) Microstructure showing Al 3 Fe (gray) and Mg 2 Si (black) in α-aluminum solid-solution matrix (alloy type A518 with 7.6% Mg). Etchant: 0.5% HF. Original magnification 560×. (b) Microstructure showing ternary eutectic and α
More
Image
Published: 01 December 2004
Fig. 19 Same structure and etchant as Figure 18 but at higher magnification to show structure of the tin-lead eutectic. Black outlines of the dendrites are formed by divorced eutectic. 375×
More
Image
Published: 01 December 2004
Fig. 21 Ti-8Al-1Mo-1V, as forged. Ingot void (black), surrounded by a layer of oxygen-stabilized alpha (light). The remaining structure consists of elongated alpha grains in a dark matrix of transformed beta. Etchant: Kroll's reagent (ASTM 192). 25×
More
Image
Published: 01 December 2004
Fig. 43 Unalloyed titanium sheet. Same as Fig. 33 but annealed 2 h at 1000 °C (1830 °F) and air cooled. Colonies of serrated alpha plates; particles of TiH and retained beta (both black) between the plates of alpha. Etchant: Kroll's reagent (ASTM 192). 250×
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003775
EISBN: 978-1-62708-177-1
... Permanickel 300, solution annealed 1 h at 1205 °C (2200 °F) and water quenched, aged 10 h at 480 °C (900 °F) and water quenched. Dispersed particles of TiN and graphite (black dots) in nickel solid solution. NaCN, (NH 4 ) 2 S 2 O 8 . 100× Fig. 6 Duranickel 301, solution annealed for 30 min at 980 °C...
Abstract
This article explains how to prepare nickel-base alloys for metallographic examination and identifies related processing and imaging challenges. It describes sectioning, mounting, grinding, and polishing procedures along with alternative electropolishing processes. It also provides information on etching and examines the microstructure of Nickel 200, Nickel 270, Duranickel 301, Monel 400, Monel R-405, Monel K-500, and other nickel alloys.
Image
Published: 01 December 2004
Fig. 8 AISI W1 (1% C) overaustenitized at 925 °C (1700 °F) and water quenched, producing martensite, retained austenite, and small patches of pearlite. Influence of etchant on revealing quenched martensite. (a) 2% nital etch reveals martensite and pearlite (black). (b) 4% picral etch reveals
More
Image
Published: 15 December 2019
lamellae appear to be outlined with bright light, and the copper lamellae between the Cu 3 P lamellae are black, contrast that makes the structure easy to see and enabling easy interlamellar spacing measurement. DIC shows that the etchant dissolved the alpha copper phase, leaving the Cu 3 P lamellae
More
Image
Published: 01 January 2003
Fig. 5 Microstructure of materials. (a) High-strength low alloy steel (0.2% C) hot rolled. The structure is ferrite and pearlite. 4% picral, then 2% nital etchants were used. Magnification is approximately 200×. (b) 1045 steel sheet, 3 mm (0.13 inch) thick, normalized by austenitizing at 1095
More
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003795
EISBN: 978-1-62708-177-1
... renders this material resistant to pullout during preparation. Fig. 1 Tetragonal zirconia polycrystals (TZP) with 2 mol% Y 2 O 3 , thermally etched in air at 1300 C (2730 °F). The scanning electron micrograph shows a fine-grained microstructure. Pores appear black. Fig. 2 Light micrograph...
Abstract
Microstructural analysis reveals many important details about the qualities and capabilities of high-performance ceramics. This article explains how to prepare ceramic samples for imaging and the imaging technologies normally used. It describes sectioning, mounting, grinding, and polishing as well as ceramographic etching. It discusses common imaging approaches, including scanning electron microscopy and thin-section polarized light techniques, a type of optical microscopy. The article also addresses microstructural classification, examining detailed micrographs from samples of aluminum oxide, zirconium dioxide, aluminum nitride, silicon carbide, and piezoelectric ceramics.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003781
EISBN: 978-1-62708-177-1
.... Macroetching Use of concentrated hydrochloric acid (HCl) at room temperature, followed by rinsing and wiping off the resulting black deposit, produces satisfactory grain contrast on copper-free zinc and zinc alloys. Etchant 1 in Table 1 may be used for zinc containing 1% Cu or less...
Abstract
This article discusses the specimen preparation techniques for zinc and its alloys and zinc-coated specimens, namely, sectioning, mounting, grinding and polishing, and etching. It describes the characteristics of lead, cadmium, iron, copper, titanium, aluminum, magnesium, and tin, which are present in the microstructure of zinc alloys. The article also provides information on microexamination that helps to determine the dendrite arm spacing, as well as the grain size, grain boundaries, and grain counts.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003727
EISBN: 978-1-62708-177-1
...-silicon commercial alloys. (a) Hypoeutectic aluminum-silicon alloy (Al-5.7Si, alloy type A319). Fan-shaped Al 51 -(MnFe) 3 -Si 2 phase growing in competition with the α-aluminum phase, silicon crystals, Al 2 Cu, and areas with complex eutectics. Etchant: 0.5% HF. Original magnification 110×. (b) Eutectic...
Abstract
The most common aluminum alloy systems are aluminum-silicon, aluminum-copper, and aluminum-magnesium. This article focuses on the grain structure, eutectic microstructure, and dendritic microstructure of these systems. It provides information on microsegregation and its problems in casting of alloys. The article also illustrates the casting defects such as macroporosity, microshrinkage, and surface defects, associated with the alloys.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003778
EISBN: 978-1-62708-177-1
...) in a matrix of tin-lead eutectic. Figure 19 shows the structure of the eutectic. Etchant 2, Table 1 . 150× Fig. 19 Same structure and etchant as Figure 18 but at higher magnification to show structure of the tin-lead eutectic. Black outlines of the dendrites are formed by divorced eutectic. 375...
Abstract
This article describes the specimen preparation steps for tin and tin alloys, and for harder base metals which are coated with these materials with illustrations. The steps discussed include sectioning, mounting, grinding, polishing, and etching. The article provides information on etchants for tin and tin alloys in tabular form. It presents the procedure recommended for electron microscopy to determine the nature of the intermetallic compound formed by the reaction between tin or tin-lead coatings on various substrates. The article concludes with an illustration of the microstructures of tin-copper, tin-lead, tin-lead-cadmium, tin-antimony, tin-antimony-copper, tin-antimony-copper-lead, tin-silver, tin-indium, tin-zinc, and tin-zinc-copper systems.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003774
EISBN: 978-1-62708-177-1
... solution containing 5 to 20% acetic acid (etchant 1 in Table 6 ). The prepared surface is immersed or swabbed for 10 s to 3 min, then washed away in running water and air-blast dried. The dense, black deposit encountered when alloys containing appreciable amounts of zinc are etched in acetic acid...
Abstract
Magnesium and its alloys are among the most difficult metals to prepare for metallographic examination. This article describes specimen preparation processes, including sectioning, mounting, grinding, and polishing. It discusses macro and microexamination techniques as well as related etching processes, including macroetching and color etching based on polarized light enhancement. The article concludes with an overview of the effects of alloying elements, including aluminum, beryllium, calcium, copper, iron, lithium, manganese, rare earth metals, silicon, silver, strontium, thorium, tin, zinc, and zirconium.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003779
EISBN: 978-1-62708-177-1
...-1Mo-1V, as forged. Ingot void (black), surrounded by a layer of oxygen-stabilized alpha (light). The remaining structure consists of elongated alpha grains in a dark matrix of transformed beta. Etchant: Kroll's reagent (ASTM 192). 25× Beta flecks are regions enriched in a beta-stabilizing...
Abstract
This article describes the fundamentals of titanium metallographic sample preparation. Representative micrographs are presented for each class of titanium alloys, including unalloyed titanium, alpha alloys, alpha-beta alloys, and beta titanium alloys. The article provides information on the macroexamination and microexamination for these alloys. It concludes with a discussion on the several metallographic techniques developed for specific purposes, such as recrystallization studies and microstructure/fracture topography correlations.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
...-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003752
EISBN: 978-1-62708-177-1
... Abstract This article is a compilation of color etchants that have been developed for a limited number of metals and alloys. It describes the optical methods for producing color, such as polarized light and differential interference contrast, with illustrations. The article discusses film...
Abstract
This article is a compilation of color etchants that have been developed for a limited number of metals and alloys. It describes the optical methods for producing color, such as polarized light and differential interference contrast, with illustrations. The article discusses film formation and interference techniques such as anodizing, chemical etching, and tint etching. It provides a description of reagents that deposit sulfide films and molybdate films. The article concludes with a discussion on the thermal and vapor deposition methods to produce color.
1