1-9 of 9 Search Results for

biomedical energy harvesters

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006898
EISBN: 978-1-62708-392-8
... harvesters as well as their applications. An overview of additively manufactured self-powered sensors is highlighted. Finally, the article discusses the issues for 3D-printed energy harvesters and their roadmap. additive manufacturing biomedical energy harvesters piezoelectricity roadmap self...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006980
EISBN: 978-1-62708-439-0
..., challenges, and future needs of AM of electronics from the space, defense, biomedical, energy, and industry perspectives. additive manufacturing electronic devices functional devices Introduction to Additive Manufacturing Additive manufacturing (AM) has been adopted as one of the most...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006895
EISBN: 978-1-62708-392-8
..., such as supercapacitors, rechargeable batteries, solar cells, mechanical-to-electric energy harvesters, field-effect transistors, photodetectors, and electrochromic devices (see Fig. 17 ) ( Ref 79 ). Fig. 17 Applications of electrospinning in electronics. LED, light-emitting diode Supercapacitors...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006886
EISBN: 978-1-62708-392-8
... on HA-based SLS studies is listed, which provides insight regarding technical aspects of processing HA powder feedstocks. ceramic powder hydroxyapatite selective laser sintering tissue engineering BIOMEDICAL IMPLANTS are in high and constantly increasing demand worldwide. This trend can...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006861
EISBN: 978-1-62708-392-8
... the in vitro cytocompatibility and in vivo biocompatibility of both binder-jetted and direct-inkjetted scaffolds for biomedical applications. Finally, it discusses the challenges and troubleshooting methodologies in 3D inkjetting of biomaterials. biomaterials biomedical applications in vitro...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
... Abstract Additive manufacturing, or three-dimensional printing technologies, for biomedical applications is rather different from other engineering components, particularly for biomedical implants that are intended to be used within the human body. This article contains two sections: "Design...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006894
EISBN: 978-1-62708-392-8
... Administration (FDA) and can be processed into different types of biomaterials ( Ref 97 ), with silk fibers having been used for biomedical applications in several forms (e.g., sutures, surgical meshes, and fabrics). The most commonly used silk is harvested from the Bombyx mori cocoon, which is a thread...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.9781627084390
EISBN: 978-1-62708-439-0
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6