1-20 of 156 Search Results for

biomedical devices

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006857
EISBN: 978-1-62708-392-8
... Abstract Additive manufacturing (AM), or three-dimensional (3D) printing, has been widely used for biomedical devices due to its higher freedom of design and its capability for mass customization. Additive manufacturing can be broadly classified into seven categories: binder jetting, directed...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
..., and precipitation-hardened stainless steels. The article discusses the potential benefits of AM for biomedical devices. It describes the types of AM processes for stainless steels, namely binder jet, directed-energy deposition, and laser powder-bed fusion. The article reviews the AM of austenitic, martensitic...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
... biomedical-based devices: binder jetting, powder-bed fusion, and directed-energy deposition. The article then characterizes the electrochemical properties of additive-manufactured/processed cobalt-chromium alloys. This is followed by sections providing an evaluation of the biological response to CoCr alloys...
Image
Published: 12 September 2022
Fig. 1 Additive-manufactured biomedical devices for applications from arthroplasty to dental appliance. (a) As-printed directed-energy deposition hip stem. (b) Powder-bed fusion as-printed hip stem with support structures. (c) Hip stem with support structures removed. (d) Acetabular cup. (e More
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications. biomedical devices electron beam melting powder-bed fusion selective laser melting selective laser sintering Powder-Bed Fusion for Biomedical Applications Powder...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... Abstract This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006980
EISBN: 978-1-62708-439-0
..., challenges, and future needs of AM of electronics from the space, defense, biomedical, energy, and industry perspectives. additive manufacturing electronic devices functional devices Introduction to Additive Manufacturing Additive manufacturing (AM) has been adopted as one of the most...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006898
EISBN: 978-1-62708-392-8
... role in developing devices for the aeronautical ( Ref 4 ), automotive ( Ref 5 ), and biomedical ( Ref 6 ) sectors. With the rapid increase in wearable and implantable biomedical devices, long-lasting power sources for these devices have become a growing concern. These devices often involve soft...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004207
EISBN: 978-1-62708-184-9
.... Biomedical devices are usually subjected to static or dynamic forces, such as in orthopedic and cardiovascular applications. For example, various artificial joint implants, fracture fixation devices, heart valves, and vascular stents are all subjected to significant repetitive loadings. On the other hand...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006908
EISBN: 978-1-62708-392-8
... Abstract Additive manufacturing, or three-dimensional printing technologies, for biomedical applications is rather different from other engineering components, particularly for biomedical implants that are intended to be used within the human body. This article contains two sections: "Design...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003792
EISBN: 978-1-62708-177-1
... Abstract Metallography plays a significant role in the quality control of metals and alloys used in the manufacture of implantable surgical devices. This article provides information and data on metallographic techniques along with images showing the microstructure of biomedical orthopedic...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.9781627083928
EISBN: 978-1-62708-392-8
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... for Standardization (ISO) grades of titanium and its alloys for biomedical applications. Subtle differences exist between ASTM and ISO standards, so there is no exact equivalency. However, it is common to specify that a material (or a device made from a material) must meet both the ASTM and the “equivalent” ISO...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003067
EISBN: 978-1-62708-200-6
... applications, lighting, information display, electronic processing and electronic devices, optical and ophthalmic products, and communications equipment. architectural glass biomedical glass dental glass glass fibers lamp glass optical glass specialty glasses traditional glasses GLASS in its...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006966
EISBN: 978-1-62708-439-0
... of currently available metal AM processes; outlines a step-by-step review of the typical workflow for design, manufacturing, evaluation, and implantation of patient-specific AM devices; and examines the existing research trends in medical applications of AM with a specific focus on metallic biomedical implants...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
... conditions. The list of polymers, as well as metals and ceramics, and their applications in biomedical devices have been extensively documented in review articles ( Ref 11 ) and are also available in the ASM International online medical materials database. References References 1. Long M...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006903
EISBN: 978-1-62708-392-8
..., and machining, have produced cobalt-base biomedical devices. The 3D-printed Co-Cr-Mo structures were fabricated to evaluate mechanical properties compared with cast specimens ( Ref 46 ). Postprocessing, including sintering and hot isostatic pressing, was introduced for 3D-printed green parts. The 3D-printed Co...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
.... The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D...
Image
Published: 30 June 2023
Fig. 4 Multiscale additive manufacturing of biomedical electronics with nanomaterials. (a) Synergistic integration of nanoscale functional materials with (b) a wide range of additive manufacturing technologies can enable (c) the creation of architecture and devices with an unprecedented level More
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005732
EISBN: 978-1-62708-171-9
...), many more applications are being developed using thermal spray. Examples of industries where such growth is seen are biomedical devices, electronics and semiconductors, automotive, and alternative energy (electrical generation, heating, and transportation). The goal of this section is to convey...