Skip Nav Destination
Close Modal
By
Chi Chun Pan, Carolyn Kim, Jiannan Li, Elaine Lui, Brett Salazar ...
By
Marc Sole-Gras, Yong Huang, Douglas B. Chrisey
By
David E. Albert
By
D.H. Barnes, A. Moavenian, A. Sharma, S.M. Best
By
Kanchan Maji, Krishna Pramanik
By
Loris Koenig
By
Takayoshi Nakano, Koji Hagihara
By
Dachao Li, Zhihua Pu, Xingguo Zhang, Chengcheng Li, Xiao Su ...
By
James F.D. Stott
Search Results for
biological organisms
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 270
Search Results for biological organisms
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004106
EISBN: 978-1-62708-184-9
... of corrosion standards proposed by the International Standards Organization (ISO). This article focuses on the important variables associated with atmospheric corrosion in marine atmospheres, namely, moisture, temperature, winds, airborne contaminants, alloy content, location, and biological organisms along...
Abstract
Several factors contribute to marine-atmospheric corrosion with the local environment being the single most important factor. Therefore, assessing a local environment, which is essential to reduce the gross expenditure, is assisted by modeling of the local environment and by a set of corrosion standards proposed by the International Standards Organization (ISO). This article focuses on the important variables associated with atmospheric corrosion in marine atmospheres, namely, moisture, temperature, winds, airborne contaminants, alloy content, location, and biological organisms along with their corresponding assessing methods. It also examines the ISO CORRAG program for modeling the corrosion rate of atmospheric corrosion that is represented as equations modeling.
Book Chapter
Bioprinting for Bone Tissue Engineering
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses...
Abstract
Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses these two approaches based on the suitable materials for these constructs and the fabrication processes used to manufacture them. The materials are grouped into polymers, metals, and hydrogels. The article also summarizes the commonly used 3D printing techniques for these materials, as well as cell types used for various applications. Lastly, current challenges in tissue engineering are discussed.
Book Chapter
Laser-Induced Forward Transfer of Biomaterials
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006860
EISBN: 978-1-62708-392-8
..., and biological inertness while having a good UV energy-absorption coefficient. Laser-Induced Forward Transfer Printing Applications As a 3D printing modality, LIFT enables the deposition of spatially controlled biomaterials, contributing to the success of tissue and organ printing. It can be implemented...
Abstract
The use of 3D bioprinting techniques has contributed to the development of novel cellular patterns and constructs in vitro, ex vivo, and even in vivo. There are three main bioprinting techniques: inkjet printing, extrusion printing (also known as bioextrusion), laser-induced forward transfer (LIFT) printing, which is also known as modified LIFT printing, matrix-assisted pulsed-laser evaporation direct write, and laser-based printing (laser-assisted bioprinting, or biological laser printing). This article provides an overview of the LIFT process, including the LIFT process introduction, different implementations, jetting dynamics, printability phase diagrams, and printing process simulations. Additionally, materials involved during LIFT are introduced in terms of bioink materials and energy-absorbing layer materials. Also, the printing of single cells and 2D and 3D constructs is introduced, showcasing the current state of the art with the ultimate goal for tissue- and organ-printing applications.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003637
EISBN: 978-1-62708-182-5
.... These organisms include many species of bacteria, algae, and fungi. In all of these environments, the tendency is for microorganisms present in the water to attach to and grow on the immersed surfaces of structural materials, resulting in the formation of a biological film, or biofilm. Larger, macroscopic...
Abstract
This article focuses on the effects of microscopic organisms and the by-products they produce on the electrochemical corrosion of metals. The general characteristics of the microorganisms that facilitate their influence on the electrochemistry of corrosion are discussed. The industries most often reported as being affected by microbiological corrosion are listed, along with the organisms usually implicated in the attack. The article explains that the influence of organisms can be addressed successfully for a corrosion control program by using four types of evidence: metallurgical, microbiological, chemical, and electrochemical. It provides information on the microbiologically influenced corrosion (MIC) of irons and steels, passive alloys (austenitic stainless steels), aluminum alloys, copper alloys, and composites. The article reviews the formation of microbial biofilms and macrofouling films. It also describes the general approaches taken to prevent MIC.
Book Chapter
International Standards for Biological Evaluation of Medical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005679
EISBN: 978-1-62708-198-6
... References References 1. Biological Evaluation of Medical Devices . ISO 10993 series, International Standards Organization ...
Abstract
This article contains a table that lists the ISO standards for the biological evaluation of medical devices.
Book Chapter
Material and Chemical Characterization as a Part of the Biological Evaluation of Medical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... not be obvious why chemical and material characterization is so important and why it is an essential part of biological evaluation for medical devices, the International Organization for Standardization (ISO) harmonized standards clearly link the two together. Parts 18 and 19 are receiving even more emphasis...
Abstract
This article provides a background to the biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of qualitative and quantitative tests that can be used to satisfy these requirements. The article describes infrared (IR) and thermal analyses that are used extensively to fingerprint polymeric materials. It also presents a discussion on the chemical characterization and risk assessment of extracts. Background information on risk assessments of extracts is also included. The four basic steps that are commonly used in the risk assessment process are discussed. These include hazard identification, dose-response assessment, and exposure assessment, and risk characterization.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004105
EISBN: 978-1-62708-184-9
... of biological fouling organisms take place directly at the metal/water interface where the corrosion occurs, not in the bulk water. This means that the chemical environment in which the corrosion reactions occur in the presence of a micro- or macrofouling film may bear little resemblance to that of the bulk...
Abstract
This article discusses the general properties of ocean water and their effects on corrosion. It describes the major and minor features of the ocean water on corrosion, including the effects of variability, pollutants, and fouling organisms. Effects of water flow velocity on marine corrosion are also reviewed.
Book Chapter
Biocompatibility of Ceramics
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... defined by Williams as “non-viable materials used in a medical device, intended to interact with biological systems” ( Ref 1 ). Ceramics used in such biological applications are commonly referred to as bioceramics. History of Bioceramics Biocompatibility has been defined by Williams as “the ability...
Abstract
Ceramics are used widely in a number of different clinical applications in the human body. This article provides a brief history of the bioceramics field and discusses the classification of bioceramics. These include bioinert ceramics, bioactive ceramics, and bioresorbable ceramics. The article describes third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods used to test the biocompatibility of ceramics, namely, biosafety testing, biofunctionality testing, bioactivity testing, and bioresorbability testing.
Image
(a) Three-dimensional (3D)-printed cardiac microphysical organ-on-a-chip in...
Available to Purchase
in Additive Manufacturing in Electronics and Functional Devices
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 3 (a) Three-dimensional (3D)-printed cardiac microphysical organ-on-a-chip integrated with strain sensor. (Left) Schematics of the device. (Right) Printed sensor that measures the contraction of anisotropic-engineered cardiac tissue, as shown in the graph in the inset. Reprinted from Ref
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
...-ground facilities or submerged structures that receive sunlight. For closed systems and buried facilities, microbial metabolism is based on energy derived from oxidation reduction (redox) reactions. Under aerobic conditions, reduction of oxygen to water complements the metabolic oxidation of organic...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001725
EISBN: 978-1-62708-178-8
... overview of the as alloys, glasses, ceramics, organics, gases, technique, and to help him decide whether solved rather than becoming an analytical inorganics, and so on. Techniques used pri- the technique might be applicable to his specialist. This Handbook describes modern marily for biological or medical...
Abstract
This article provides an overview of how this volume is organized and structured. It describes the methods for analyzing the materials in simplified terms and emphasizes the most common applications and limitations of each method.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... Abstract This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Book Chapter
Extrusion-Based Three-Dimensional Bioprinting Technology
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006856
EISBN: 978-1-62708-392-8
... ENGINEERING, the regeneration of damaged functional living tissues and organs is a primary aim. The tissue engineering paradigm focuses on creating artificial tissue structures that are used to restore or replace damaged or diseased tissues and organs ( Ref 1 , 2 ). The interconnected porous architectures...
Abstract
This article begins with a description of extrusion-based bioprinting for tissue scaffold fabrication. It also examines various extrusion-based bioprinting processes and related tissue scaffolding strategies, presents the selection criteria of various bioinks with various polymers and their printed scaffolds for applications in tissue engineering and regenerative medicines, and provides future research recommendations to address the shortcomings and issues found in current extrusion-based bioprinting processes.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
... Abstract This article provides a summary of the biocompatibility or biological response of metals, ceramics, and polymers used in medical implants, along with their clinical issues. The polymers include ultrahigh-molecular-weight polyethylene, nonresorbable polymer, and resorbable polymers...
Abstract
This article provides a summary of the biocompatibility or biological response of metals, ceramics, and polymers used in medical implants, along with their clinical issues. The polymers include ultrahigh-molecular-weight polyethylene, nonresorbable polymer, and resorbable polymers.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001119
EISBN: 978-1-62708-162-7
... become critical factors. Alkyl compounds are lipid soluble and pass readily across biologic membranes unaltered by their surrounding medium. They are only slowly dealkylated or transformed to inorganic salts. Hence, their excretion tends to be slower than inorganic forms, and the pattern of organic...
Abstract
Metal contamination of the environment reflects both natural sources and industrial activity, affecting human health. This article begins with a discussion on the level of metal exposure resulting in toxicological effects, the factors influencing toxicity of metals, and carcinogenicity of metal compounds. It discusses some commonly used chelating agents for treating metal intoxication, and clinical effectiveness in treating poisoning by different metals. The metals discussed are grouped into four categories: (1) major toxic metals with multiple effects, including arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel; (2) essential metals with potential for toxicity, including cobalt, copper, iron, manganese, molybdenum, selenium, and zinc; (3) metals with toxicity related to medical therapy, including aluminum, bismuth, gallium, gold, lithium, and platinum; and (4) minor toxic metals, including antimony, barium, indium, magnesium, silver, tellurium, thallium, tin, titanium, uranium, and vanadium. The main factors included in the discussion are their disposition, toxicity, biological factors and treatment.
Book Chapter
Control of Professional Magnetic Field Exposure—International Standards and Regulations
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005858
EISBN: 978-1-62708-167-2
... national and international organizations and scientific institutions. Biological and Health Effects Biological effects are not necessarily harmful to health. They are the measurable and natural response of the organism to a stimulus or a change in the environment. Many activities produce various...
Abstract
This article provides an overview of electromagnetic fields (EMFs) and discusses their direct and indirect effects on human health. It provides a detailed description of the exposure levels of EMFs in residential and work environments. The article examines the international and European standards and regulations regarding occupational exposure to EMFs encountered in industrial activities. It discusses the categories of work equipment or activities that may expose the worker above and under the orientation value. The article also describes the main principles underlying the protection system adopted for the frequency range of 50 Hz to 10 MHz.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
...-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimeters. These materials are attractive as biological implants, tissue defect fillers, scaffolds...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments.
Book Chapter
Additive Manufacturing of Medical Devices
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
... the creation of hollow structures and complex shapes difficult to produce by removal and molding ( Fig. 1 ). For example, biocompatibility is a concern when considering a metal implant for bone protection. In this case, it does not simply mean the presence or absence of biological harm as a substance...
Abstract
This article provides an overview of additive manufacturing (AM) methods, the three-dimensional (3D)-AM-related market, and the medical additive manufactured applications. It focuses on the current scenario and future developments related to metal AM for medical applications. The discussion covers the benefits of using 3D-AM technology in the medical field, provides specific examples of medical devices fabricated by AM, reviews trends in metal implant development using AM, and presents future prospects for the development of novel high-performance medical devices via metal 3D-additive manufacturing.
Book Chapter
Piezoelectric Jetting of Biomaterials
Available to PurchaseSeries: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006891
EISBN: 978-1-62708-392-8
... to form artificial organizations. Biological scaffolds are important for tissue engineering and are widely used for clinical treatments. Raw materials, such as cellulose, collagen, and polylactide-glycolic acid copolymer, have been used to print scaffolds. In addition, cells can be “gifted...
Abstract
Piezoelectric jetting is a common form of additive manufacturing technology. With the development of material science and manufacturing devices, piezoelectric jetting of biomaterials has been applied to various fields including biosensors, tissue engineering, deoxyribonucleic acid (DNA) synthesis, and biorobots. This article discusses the processes involved in piezoelectric jetting of biosensors and biorobots and the applications of piezoelectric jetting for tissue engineering and producing DNA. In addition, it reviews the challenges and perspectives of piezoelectric jetting.
Book Chapter
Evaluating Microbiologically Influenced Corrosion
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003670
EISBN: 978-1-62708-182-5
... ). Fig. 1 Sulfate-reducing bacteria from the water bottom of an offshore oil storage tank In natural conditions, SRB grow in association with other microorganisms and use a range of carboxylic acids and fatty acids, which are common by-products of other micro-organisms. Biological slimes...
Abstract
This article explains how an engineer might go about assessing the risk of microbiologically influenced corrosion (MIC) in an industrial situation. It describes the systems that are susceptible to the effects of MIC by sulfate-reducing bacteria (SRB). The article discusses the effects of microorganisms other than SRB on metals. SRB-related problems, which are the most common MIC issue, are also explored. The article describes the test procedures used to enumerate microbiological populations. It concludes with a discussion on risk assessment based on operating conditions.
1