1-20 of 90 Search Results for

biodegradation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 June 2012
Fig. 10 Chemical formula of dental resin biodegradation products More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006866
EISBN: 978-1-62708-395-9
... Abstract Microbial degradation in the environment is initiated by abiotic (nonliving physical or chemical) processes. Mechanical weathering and other mechanical processes are the main drivers of the initial degradation. This article presents an overview of weathering and biodegradation...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005681
EISBN: 978-1-62708-198-6
...-matrix compositions. The article also discusses the compositions, properties, and clinical applications of polyacid-modified composite resins and resin-modified glass-ionomer cements. It concludes with information on biodegradation and biocompatibility of resin-based restorative materials...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005667
EISBN: 978-1-62708-198-6
... from a biocompatibility perspective. These include raw materials, the manufacturing process, cleaning and sterilization processes, and biodegradation and biostability. The article reviews the general testing methods of polymers, such as chemical, mechanical and thermal. It concludes with a section...
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003356
EISBN: 978-1-62708-195-5
... composites and concludes with a discussion on biodegradable composites. bio-based resins natural fiber fatty-acid distribution plant oils triglyceride-based monomer acrylated epoxidized soybean oil maleinized soyoil monoglyceride maleinized hydroxylated oil polymer properties ballistic impact...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006925
EISBN: 978-1-62708-395-9
..., and the most significant influences of structure on those properties are then discussed. A variety of engineering thermoplastics, including some that are regarded as high-performance thermoplastics, are covered in this article. In addition, a few examples of commodity thermoplastics and biodegradable...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses...
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007004
EISBN: 978-1-62708-450-5
... Abstract This article focuses on the quenching properties of vegetable and animal oils, including toxicity and biodegradability of vegetable/animal oils. The article provides a detailed discussion on the oxidation of vegetable/animal oils. The addition of antioxidants to stabilize soybean...
Image
Published: 01 February 2024
safflower oil; HOSN, high-oleic sunflower oil; COM, commercial biodegradable oil More
Image
Published: 12 September 2022
Fig. 7 (a) Computer-aided design of 3D-printed scaffolds with various porosities (left) and their optical images (right). Effects of designed porosity and composition ratio of biphasic calcium phosphate on (b) compressive strength (CS) and (c) biodegradability. HA, hydroxyapatite. (a–c More
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005679
EISBN: 978-1-62708-198-6
... Evaluation of biodegradation of medical devices ISO 10993-10 Tests for irritation and sensitization ISO 10993-11 Tests for systemic toxicity ISO 10993-12 Sample preparation and reference materials ISO 10993-13 Identification and quantification of degradation of ceramics ISO 10993-14...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... regeneration Biodegradable Surrounding tissue replaces material Same as sustainable and degradable materials Fixation to soft tissues Percutaneous devices Artificial cartilage or ligament (a) Because this material stimulates the formation of fibrous tissue or attachment, it is literally...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006892
EISBN: 978-1-62708-392-8
... causing adverse effects. Also, if a biomaterial degrades in the body, the biodegradation products of the biomaterial should be cleared by the host and must not have negative effects. In addition to biocompatibility, biomaterials should also meet other criteria, including: Nontoxic Chemically pure...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001222
EISBN: 978-1-62708-170-2
... regulations continue to affect the direction of cleaner development and cleaner use. Three major issues confront cleaner formulators: reducing or eliminating phosphate effluent; reducing the aquatic toxicity and increasing the biodegradability of cleaners; and “recycling” of cleaners to extend bath life...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006905
EISBN: 978-1-62708-392-8
..., the selection of materials, especially biocompatible materials, remains limited for both resins and metals in the medical field. In addition to resin and metal, biodegradable polymer materials such as polycaprolactone and biodegradable ceramics such as β-tricalcium phosphate and hydroxyapatite—as materials...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... ). These coatings are ideally expected to be of desired thickness, have excellent adhesion strength, and prevent biodegradation. They are also used for making bone cements, a calcium-deficient HA-based product for anchoring artificial joints by filling in the space between prosthesis and bone. Such anchoring...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
..., electrons released by the oxidation of metals are used directly in microbial metabolism. In other cases, it is the chemicals and conditions created by microbial activity that promote MIC. Secondary effects can also be important. These include such things as the biodegradation of lubricants and protective...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004130
EISBN: 978-1-62708-184-9
.... The current trend to produce environmentally benign engine oils means that the resulting formulations are more readily biodegraded. Slow-speed marine engines are at risk because they run for long periods of time at constant temperatures (37 to 55 °C, or 99 to 131 °F) conducive to microbial growth. Oil...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005780
EISBN: 978-1-62708-165-8
... and which has considerable commercialization potential as an alternative to molten lead baths is an aqueous solution of carboxymethyl cellulose (CMC) ( Ref 6 , 7 ). Aqueous CMC solutions have been shown to be biodegradable and nontoxic ( Ref 8 , 9 , 10 ) and to result in potentially favorable wire...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006356
EISBN: 978-1-62708-192-4
... manufacturer guidelines, exposure to process chemistry, food-grade requirements, biodegradable requirements, drain interval, and equipment life. Greases The use of PAOs in automotive, industrial, and military greases dates back many years. There are several types of thickeners that can be used...