Skip Nav Destination
Close Modal
Search Results for
biocompatibility
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 99 Search Results for
biocompatibility
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
...Abstract Abstract This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion...
Abstract
This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides a description of metal binding and its effects on metabolic processes. Hypersensitive responses to metal ions are also reviewed. The article concludes with a discussion on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... ceramics. The article describes third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods used to test the biocompatibility of ceramics, namely, biosafety...
Abstract
Ceramics are used widely in a number of different clinical applications in the human body. This article provides a brief history of the bioceramics field and discusses the classification of bioceramics. These include bioinert ceramics, bioactive ceramics, and bioresorbable ceramics. The article describes third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods used to test the biocompatibility of ceramics, namely, biosafety testing, biofunctionality testing, bioactivity testing, and bioresorbability testing.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005665
EISBN: 978-1-62708-198-6
...Abstract Abstract This article describes the corrosion resistance and ion release from main transition metallic bearings used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different...
Abstract
This article describes the corrosion resistance and ion release from main transition metallic bearings used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different aspects of ion toxicity. These include ion concentration and accumulation in organisms, reactive oxygen species and oxidative stress, and carcinogenicity stimulated by the corrosion process and toxic ions release.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005667
EISBN: 978-1-62708-198-6
...Abstract Abstract This article discusses several aspects of biocompatibility of polymers, including the selection of a suitable polymer, specific use of a material, contact of polymer on body site, and duration of the contact. It describes the factors influencing the biological response...
Abstract
This article discusses several aspects of biocompatibility of polymers, including the selection of a suitable polymer, specific use of a material, contact of polymer on body site, and duration of the contact. It describes the factors influencing the biological response of the polymer from a biocompatibility perspective. These include raw materials, the manufacturing process, cleaning and sterilization processes, and biodegradation and biostability. The article reviews the general testing methods of polymers, such as chemical, mechanical and thermal. It concludes with a section on the guidance, provided by the regulatory authorities, on the biocompatibility testing of polymers and polymer-containing devices that can aid in selecting the right analysis.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
...Abstract Abstract In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant...
Abstract
In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals and particulate materials to corrosion. The effect of metal ions from an implanted device on the human body is also discussed. The article concludes with information on the possible cancer-causing effects of metallic biomaterials.
Image
Published: 01 June 2012
Fig. 18 Relationship between polarization resistance and biocompatibility of pure metals, cobalt-chromium, and stainless steels. Source: Ref 8
More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006269
EISBN: 978-1-62708-169-6
... provides information on the wear and fatigue properties and corrosion resistance of nitrided titanium alloys, as well as the effect of nitriding on the biocompatibility of titanium. It also compares plasma-nitrided titanium alloys with alloy steels. It concludes with a short discussion on the effect...
Abstract
This article describes the nitriding methods of titanium alloys such as plasma nitriding and gas nitriding. It focuses on the interaction of titanium alloys, interaction of titanium with nitrogen, and the interaction of titanium with oxygen, carbon, and hydrogen. The article provides information on the wear and fatigue properties and corrosion resistance of nitrided titanium alloys, as well as the effect of nitriding on the biocompatibility of titanium. It also compares plasma-nitrided titanium alloys with alloy steels. It concludes with a short discussion on the effect of nitriding on the surface properties of titanium and two-phase α + β alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005672
EISBN: 978-1-62708-198-6
... of biocompatible medical device adhesives are listed in a table. The article concludes with a section on the selection of materials for medical adhesives. acrylics adhesive bonding adhesive selection bioadhesives biocompatibility curing cyanoacrylates dentistry epoxies hot melts medical adhesives...
Abstract
This article provides an overview of curing techniques, adhesive chemistries, surface preparation, adhesive selection, and medical applications of adhesives. The curing techniques are classified into moisture, irradiation, heat, and anaerobic. The article highlights the common types of curable adhesives used for medical device assemblies, including acrylics, cyanoacrylates, epoxies, urethanes, and silicones. Other forms of adhesives, such as hot melts, bioadhesives, and pressure-sensitive adhesives, are also discussed. The typical characteristics and applications of biocompatible medical device adhesives are listed in a table. The article concludes with a section on the selection of materials for medical adhesives.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005681
EISBN: 978-1-62708-198-6
... and resin-matrix compositions. The article also discusses the compositions, properties, and clinical applications of polyacid-modified composite resins and resin-modified glass-ionomer cements. It concludes with information on biodegradation and biocompatibility of resin-based restorative materials...
Abstract
This article discusses the composition of the major components of dental composite resins: organic resin matrix, filler, coupling agents, and initiator-accelerator systems. It describes the properties of composite resins that are related to the amount and type of filler and resin-matrix compositions. The article also discusses the compositions, properties, and clinical applications of polyacid-modified composite resins and resin-modified glass-ionomer cements. It concludes with information on biodegradation and biocompatibility of resin-based restorative materials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol. biocompatibility...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
...Abstract Abstract This article provides a summary of the biocompatibility or biological response of metals, ceramics, and polymers used in medical implants, along with their clinical issues. The polymers include ultrahigh-molecular-weight polyethylene, nonresorbable polymer, and resorbable...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
... biomedical implant alloys are listed in a tabular form. The article presents an overview of the surface-modification methods for titanium and its alloys implants. It concludes with a section on biocompatibility and in vivo corrosion of titanium alloys. artificial heart pumps biocompatibility...
Abstract
Titanium and its alloys have been used extensively in a wide variety of implant applications, such as artificial heart pumps, pacemaker cases, heart valve parts, and load-bearing bone or hip joint replacements or bone splints. This article discusses the properties of titanium and its alloys and presents a list of titanium-base biomaterials. Titanium components are produced in wrought, cast, and powder metallurgy (PM) form. The article describes forging, casting, and heat treating of titanium alloys for producing titanium components. Typical mechanical properties of titanium biomedical implant alloys are listed in a tabular form. The article presents an overview of the surface-modification methods for titanium and its alloys implants. It concludes with a section on biocompatibility and in vivo corrosion of titanium alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
...Abstract Abstract The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design...
Abstract
The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites. A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation.
Image
in Material and Chemical Characterization as a Part of the Biological Evaluation of Medical Devices
> Materials for Medical Devices
Published: 01 June 2012
Fig. 1 Polymeric biomaterials are composed of mixtures of chemicals, some of which are bound to the polymer backbone or into the material matrix, while others are free to migrate into the surrounding environment. The identities and abundance of these chemicals determine the biocompatibility
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004207
EISBN: 978-1-62708-184-9
... discussed. The article concludes with information on the biological consequences of in vivo corrosion and biocompatibility. electrochemical method biocompatibility biomaterials chemical composition cobalt alloys corrosion iron metallic biomaterials stainless steel titanium alloy oxide-film...
Abstract
This article tabulates the chemical composition of iron-base, titanium-base, and cobalt-base alloys and illustrates the microstructures of these materials. It discusses the surface morphology and chemistry of oxide-film-covered alloys and provides insights into the interaction. The article illustrates the interfacial structure of a biomaterial surface contacting with the biological environment. It describes the corrosion behavior of stainless steel, cobalt-base alloy, and titanium alloys. The electrochemical methods used for studying metallic biomaterials corrosion are also discussed. The article concludes with information on the biological consequences of in vivo corrosion and biocompatibility.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
...Abstract Abstract Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005686
EISBN: 978-1-62708-198-6
... infrared analysis medical devices polymeric biomaterials qualitative tests quantitative tests risk assessment thermal analysis CURRENTLY, there is a great deal of discussion about the merits of chemical and material characterization with regard to medical device biocompatibility. While it may...
Abstract
This article provides a background to the biological evaluation of medical devices. It discusses what the ISO 10993 standards require for polymeric biomaterials and presents examples of qualitative and quantitative tests that can be used to satisfy these requirements. The article describes infrared (IR) and thermal analyses that are used extensively to fingerprint polymeric materials. It also presents a discussion on the chemical characterization and risk assessment of extracts. Background information on risk assessments of extracts is also included. The four basic steps that are commonly used in the risk assessment process are discussed. These include hazard identification, dose-response assessment, and exposure assessment, and risk characterization.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
..., and hip nails. However, as TJR surgery became popular, it was evident that the very high modulus of stainless steel (∼200 GPa, or 29 × 10 6 psi) was a deterrent ( Table 1 ). Also, researchers started looking for alloys that were more biocompatible and corrosion and wear resistant. Cobalt-base alloys came...
Abstract
This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article discusses specific problems associated with implant manufacturing processes and the consequent compromises in the properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. The article reviews four different types of tissue responses to the biomaterial. It discusses the testing methods of implant failure, such as in vitro and in vivo assessment of tissue compatibility.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005684
EISBN: 978-1-62708-198-6
... with its ductility and relative ease of fabrication into complex shapes, made tantalum attractive for surgical applications beginning in the first half of the 20th century. In 1924, the American College of Surgeons boldly declared tantalum “the best metal for orthopaedic implants based on biocompatibility...
Abstract
Physically, tantalum is a dark, blue-gray, lusterless metal that exists in two crystalline forms: an alpha-phase with a body-centered cubic structure, and a brittle beta-phase with a tetragonal orientation. This article tabulates the physical and material properties of tantalum. It discusses the use of tantalum in medical electronics and the advantage of tantalum over stainless steel. The article describes the manufacturing and medical applications of tantalum foam.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005676
EISBN: 978-1-62708-198-6
... Compatibility: Biocompatibility, United States Pharmacopeia (USP) classification, compatibility with other materials in the device, manufacturing process, and sterilization and use conditions Others: Optical, electrical The information on product data sheets is most useful for screening materials...
Abstract
Polymers offer a wide range of choices for medical applications because of their versatility in properties and processing. This article provides an overview of polymeric materials and the characteristics that make them a unique class of materials. It describes the ways to classify polymers, including the polymerization method, how the material deforms, or molecular origin or stability. The article contains tables that list common medical polymers used in medical devices. It explains the medical polymer selection criteria and regulatory aspects of materials selection failure analysis and prevention. Failure analysis and prevention processes to determine the root cause of failures that arise at different stages of the product life cycle are reviewed. The article describes the mechanisms of plastic product failure analysis. It discusses the trends in the use of medical polymers, such as high-performance polymers for implants, tissue engineering, and bioresorbable polymers.