Skip Nav Destination
Close Modal
Search Results for
bioactive glass
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 46 Search Results for
bioactive glass
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Material Aspects of Additively Manufactured Medical Devices
> Additive Manufacturing in Biomedical Applications
Published: 12 September 2022
Fig. 3 Mesoporous bioactive glass/silk fibroin scaffolds; (a) optical and (b) scanning electron microscopy images. Source: Ref 27. Creative Commons License (CC BY-ND 4.0), https://creativecommons.org/licenses/by-nd/4.0/
More
Image
Published: 01 November 1995
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005675
EISBN: 978-1-62708-198-6
... crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences...
Abstract
This article focuses on ceramics, glasses, glass-ceramics, and their derivatives, that is, inorganic-organic hybrids, in the forms of solid or porous bodies, oxide layers/coatings, and particles with sizes ranging from nanometers to micrometers, or even millimetres. These include inert crystalline ceramics, porous ceramics, calcium phosphate ceramics, and bioactive glasses. The article discusses the compositions of ceramics and carbon-base implant materials, and examines their differences in processing and structure. It describes the chemical and microstructural basis for their differences in physical properties, and relates the properties and hard-tissue response to particular clinical applications. The article also provides information on the glass or glass-ceramic particles used in cancer treatments.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005655
EISBN: 978-1-62708-198-6
... ) and later in dental applications, also in the 1960s ( Ref 6 ). Subsequent research into bioinert ceramics included experiments on porous alumina ( Ref 7 ) and the development of alumina-on-alumina hip implants ( Ref 8 ). By 1969, Larry Hench and co-workers had developed Bioglass, a bioactive glass...
Abstract
Ceramics are used widely in a number of different clinical applications in the human body. This article provides a brief history of the bioceramics field and discusses the classification of bioceramics. These include bioinert ceramics, bioactive ceramics, and bioresorbable ceramics. The article describes third-generation bioceramics, classified by Hench and Polak, such as silicate-substituted hydroxyapatite and bone morphogenic protein-carrying calcium phosphate coatings. It reviews several examination methods used to test the biocompatibility of ceramics, namely, biosafety testing, biofunctionality testing, bioactivity testing, and bioresorbability testing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006855
EISBN: 978-1-62708-392-8
... printability Human corneal epithelial cells 30 ADA/gelatin/carboxymethyl chitosan 3D bioprinting Improving water content, mechanical properties, antibacterial properties, and degradation Bone mesenchymal stem cells 31 ADA/gelatin + bioactive glass nanoparticles 3D bioprinting … MG-63...
Abstract
This article discusses alginate/gelatin-based bioinks in 3D bioprinting applications, providing a summary of the most relevant previous work in the field. It presents advanced compositions to enhance functionality and/or optimize hydrogels for 3D bioprinting. The article discusses advanced printing techniques for alginate/gelatin-based bioinks.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
..., and other device records that are a part of this database. The database includes other material categories as well. The usage of materials in predicate devices is an efficient tool in the material selection process aiming for regulatory approval. bioactive glass cardiovascular medical devices metals...
Abstract
This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which is a product of ASM International and Granta Design available by license online and as an in-house version. The material usage was gleaned from over 24,000 U.S. Food and Drug Administration (USFDA), Center for Devices and Radiological Health, Premarket notifications (510k), and USFDA Premarket Approvals, and other device records that are a part of this database. The database includes other material categories as well. The usage of materials in predicate devices is an efficient tool in the material selection process aiming for regulatory approval.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006886
EISBN: 978-1-62708-392-8
..., polycaprolactone), thermosetting polymers, waxes (e.g., carnauba wax), and acids (e.g., stearic acid, etc.) ( Ref 10 , 22 ). Moreover, low-melting glasses and metal oxides have been used in the past as inorganic binding agents ( Ref 31 – 33 ). This approach is highly advantageous compared to dSLS because...
Abstract
Hydroxyapatite (HA) is one of the most popular materials in tissue scaffold engineering due to its similarity to the nature of human bone; it accounts for more than half of the total weight of the latter. Selective laser sintering (SLS) is an additive manufacturing method that is used in producing tissue engineering parts from HA feedstocks. This article provides a brief overview of the process itself, along with a detailed review of HA-based tissue engineering applications using SLS. Discussion on the various polymer composites is presented. A detailed overview of selected publications on HA-based SLS studies is listed, which provides insight regarding technical aspects of processing HA powder feedstocks.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006854
EISBN: 978-1-62708-392-8
... ), hydroxyapatite ( Ref 46 ), mesoporous bioactive glass ( Ref 47 ) Bioactive glass Syringe extrusion ( Ref 47 , 48 ) hBMSC ( Ref 48 ) Alginate ( Ref 48 ), polyvinyl alcohol ( Ref 47 ) Thermal inkjet printing ( Ref 49 ) Human mesenchymal stem cells (hMSC) ( Ref 49 ) Hydroxyapatite ( Ref 49...
Abstract
Due to its layer-by-layer process, 3D printing enables the formation of complex geometries using multiple materials. Three-dimensional printing for bone tissue engineering is called bioprinting and refers to the use of material-transfer processes for patterning and assembling biologically relevant materials, molecules, cells, tissues, and biodegradable biomaterials with a prescribed organization to accomplish one or more biological functions. Currently, 3D bioprinting constructs can be classified into two categories: acellular and cellular. This article introduces and discusses these two approaches based on the suitable materials for these constructs and the fabrication processes used to manufacture them. The materials are grouped into polymers, metals, and hydrogels. The article also summarizes the commonly used 3D printing techniques for these materials, as well as cell types used for various applications. Lastly, current challenges in tissue engineering are discussed.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006853
EISBN: 978-1-62708-392-8
... silica-base glass, has also shown a positive cell response and osseointegration. A coating with RKKP was fabricated using either an enameling and firing technique or thermal treatment. AP40, another silica bioactive glass, was also determined to be comparable with RKKP in terms of reactivity. Frandsen et...
Abstract
One of the most frequently cited advantages of ceramics in dentistry relates to aesthetics, and the same applies for dental implants. Zirconia has emerged as the material of choice for nonmetal implants. This article introduces the reader to zirconia as an implant material, its properties, manufacturing processes, and the particular surface modifications and treatments that have rendered its surfaces biologically compatible with peri-implant soft and hard tissues.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003067
EISBN: 978-1-62708-200-6
... Abstract This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant...
Abstract
This article reviews the applications of traditional glasses in architecture, transportation, construction, houseware, containers, and fibers. It also describes uses of specialty glasses for aerospace and military applications, biomedical and dental applications, chemical-resistant applications, lighting, information display, electronic processing and electronic devices, optical and ophthalmic products, and communications equipment.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005659
EISBN: 978-1-62708-198-6
... S.K. and Lin C.M. , Mater. Chem. Phys. , Vol 77 , 2003 , p 70 – 76 7. Yamamoto T. , Hench L.L. , and Wilson J. , Handbook on Bioactive Ceramics , Vol 1 , Bioactive Glasses and Glass Ceramics , CRC Press , Boca Raton, FL , 1990 8. Shim H.S...
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006903
EISBN: 978-1-62708-392-8
... attractive calcium-phosphate-based composite for bone tissue engineering is calcium phosphates/bioactive glass composites. One study reported the effects of binder deposition rate and sintering condition on the mechanical properties of 3D-printed β-TCP/bioactive glass scaffolds ( Ref 55 ). A binder...
Abstract
Additive manufacturing (AM) technologies print three-dimensional (3D) parts through layer-by-layer deposition based on the digital input provided by a computer-aided design file. This article focuses on the binder jet printing process, common biomaterials used in this AM technique, and the clinical applications relevant to these systems. It reviews the challenges and future directions of binder-jetting-based 3D printing.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006562
EISBN: 978-1-62708-290-7
... diboride, boron carbide, zirconium carbide, and bioactive glasses ( Ref 42 – 44 ). Advanced controls were also implemented to enhance the precision of extrusion-on-demand and consistency in paste flow rate ( Ref 45 – 48 ). Later developed extrusion-based AM processes have their respective advantages...
Abstract
This article is a review of the material extrusion-based ceramic additive manufacturing (MECAM) processes. The discussion begins with details of extrusion with filament and paste, covering the most popular variants of paste extrusion-based MECAM techniques that can be differentiated based on paste type and the method of shape retention of the deposited layer: extrusion freeforming, robocasting ceramic on-demand extrusion, and freeze-form extrusion fabrication. The article then focuses on post-processing considerations and the mechanical properties of sintered ceramic parts. It concludes with information on innovation opportunities in ceramic additive manufacturing, such as incorporating UV-curing and gelation in the process and producing geometrically complex structures from shapeable green bodies.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... 6 ). Other materials, such as hydroxyapatite, are used as coatings on various biomaterials and are plasma sprayed onto the material. Conventional casting routes are adopted to produce bioceramic glasses. For this, one must ensure that the solidification process in this method is slow enough...
Abstract
This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article discusses specific problems associated with implant manufacturing processes and the consequent compromises in the properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. The article reviews four different types of tissue responses to the biomaterial. It discusses the testing methods of implant failure, such as in vitro and in vivo assessment of tissue compatibility.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... … … … … 110–140 230–284 … Bone 77 Ceramics Nano-hydroxyapatite (HA) 50 200–300 mm/min 7.8–11.8 in./min … … 0.3 0.012 … … … Bone 79 13-93 bioactive glass/stearic acid 2–3 76.2–304.8 3.0–12.0 0.229 0.009 0.1524 0.0060 60 140 1 cal/cm 2 Bone 80 Polymer-ceramic...
Abstract
Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... of silicon, silicon nitride (Si 3 N 4 ), and/or glass results in a better wearing material. The large SiC grains resist penetration by impinging particles, while the matrix resists microcracking. This composite approach to mixing hard ceramic materials with more plastic ceramics yields a better wearing...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... supply of cancellous bone prior to recementing in a total knee prosthesis. Bioactive Ceramics “Bioactive” generally refers to any material that elicits a specific biological response resulting in the formation of a bond between the material and tissue. Bioceramics, bioglass, and glass ceramics...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005660
EISBN: 978-1-62708-198-6
... and ceramics Alumina Joint replacement, dental implants Zirconia Joint replacement Calcium phosphates Bone repair and augmentation, surface coatings on metals Bioactive glasses Bone replacement Porcelain Dental restoration Carbons Heart valves, percutaneous devices, dental implants...
Abstract
The biocompatibility of a material relates to its immunological response, toxicity profile, and ability to integrate with surrounding tissue without undesirable local or systemic effects on a patient. This article underscores the transformation of the medical device design ecosystem engaged as an integral part of the device ecosystem. It discusses the applications of biomaterials, including orthopedic, cardiovascular, ophthalmic, and dental applications. The article describes four major categories of biomaterials such as metals, polymers, glass and ceramics, and composites. A discussion on natural materials, nanomaterials, and stem cells is also provided. The article concludes with examples of biomaterials applications, such as endovascular devices, knee implants, and neurostimulation.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006571
EISBN: 978-1-62708-290-7
... – 68 ), bioactive glass ( Ref 33 , 67 ), and dental porcelain ( Ref 69 , 70 ); specialized ceramics and oxides, such as titanium carbide (TiC x ) ( Ref 71 ), nickel oxide (NiO 2 ) ( Ref 72 ), magnesium oxide (MgO) ( Ref 73 ), barium titanate (BaTiO 3 ) ( Ref 6 , 74 ), titanium silicon carbide (Ti...
Abstract
The highly irregular morphologies of ceramic powder particles due to their process history present a challenge to binder jetting additive manufacturing (BJ-AM) ceramic powder feedstock processability, but knowledge of powder metallurgy of ceramics benefits the development and analysis of the BJ-AM ceramic processes. Understanding BJ-AM process principles and ceramics processing challenges requires reviewing a number of fundamental principles, which this article delineates. The discussion covers the processability considerations, a brief summary of some fundamental aspects of modeling of liquid permeation in the powder bed, and process capabilities and advantages of BJ-AM technology.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002417
EISBN: 978-1-62708-193-1
... are known to be susceptible to subcritical crack growth in monotonic tension under the influence of an environment. This stress corrosion or static fatigue process has been studied extensively in a wide variety of glasses, oxide ceramics, transformation-toughened ceramics, and other brittle materials...
Abstract
This article summarizes the understanding of the mechanisms and mechanical effects of fatigue processes in highly brittle materials, with particular emphasis on ceramics. It provides a discussion on room-temperature fatigue crack growth in monolithic ceramics, transformation-toughened ceramics, and ceramic composites under cyclic compression. The cyclic damage zones ahead of tensile fatigue cracks, crack propagation under cyclic tension or tension-compression loads, and elevated-temperature fatigue crack growth in monotonic and composite ceramics, are discussed. The article presents ceramic fatigue data for fatigue crack growth testing and concludes with a discussion on life prediction for ceramics or ceramic-matrix composites.
1