Skip Nav Destination
Close Modal
Search Results for
binary iron-carbon system
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 355 Search Results for
binary iron-carbon system
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 2024
Fig. 1 Phase diagram of the binary iron-carbon system. The stable system (iron-graphite) is shown with solid lines; the metastable system (iron-iron carbide) is shown with dotted lines.
More
Image
Published: 01 December 2008
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006296
EISBN: 978-1-62708-179-5
... Abstract Cast irons, like steels, are iron-carbon alloys but with higher carbon levels than steels to take advantage of eutectic solidification in the binary iron-carbon system. This article introduces the solid-state heat treatment of iron castings and describes the various processes of heat...
Abstract
Cast irons, like steels, are iron-carbon alloys but with higher carbon levels than steels to take advantage of eutectic solidification in the binary iron-carbon system. This article introduces the solid-state heat treatment of iron castings and describes the various processes of heat treatment of cast iron. It provides information on stress relieving, annealing, normalizing, through hardening, and surface hardening of these castings. The article discusses general considerations for the heat treatment of cast iron. Cast irons are occasionally nitrided for various applications with the aim of enhancing surface hardness and corrosion resistance of the products. The article describes molten salt bath cyaniding and ion nitriding of cast iron.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006228
EISBN: 978-1-62708-163-4
... that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation...
Abstract
Eutectoid and peritectoid transformations are classified as solid-state invariant transformations. This article focuses primarily on the structures from eutectoid transformations with emphasis on the classic iron-carbon system of steel. It reviews peritectoid phase equilibria that are very common in several binary systems. The addition of substitutional alloying elements causes the eutectoid composition and temperature to shift in the iron-carbon system. The article graphically illustrates the effect of various substitutional alloying elements on the eutectoid transformation temperature and effective carbon content. The partitioning effect of substitutional alloying elements, such as chromium, manganese, and silicon, in pearlitic steel is also illustrated.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006231
EISBN: 978-1-62708-163-4
... stabilization (iron-chromium) and austenite stabilization (iron-nickel). austenite stabilization binary iron phase diagrams carbon-chromium-iron isopleth eutectic system ferrite stabilization Gibbs triangle isopleth plots isothermal plots liquidus plots peritectic system phase equilibrium...
Abstract
This article describes the liquidus plots, isothermal plots, and isopleth plots used for a hypothetical ternary phase space diagram. It discusses the single-phase boundary (SPB) line and zero-phase fraction (ZPF) line for carbon-chromium-iron isopleth. The article illustrates the Gibbs triangle for plotting ternary composition and discusses the ternary three-phase phase diagrams by using tie triangles. It describes the peritectic system with three-phase equilibrium and ternary four-phase equilibrium. The article presents representative binary iron phase diagrams, showing ferrite stabilization (iron-chromium) and austenite stabilization (iron-nickel).
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003734
EISBN: 978-1-62708-177-1
... Abstract Solid-state transformations from invariant reactions are of three types: eutectoid, peritectoid, and monotectoid transformations. This article focuses on structures from eutectoid transformations with an emphasis on the classic iron-carbon system of steel. It illustrates the morphology...
Abstract
Solid-state transformations from invariant reactions are of three types: eutectoid, peritectoid, and monotectoid transformations. This article focuses on structures from eutectoid transformations with an emphasis on the classic iron-carbon system of steel. It illustrates the morphology of a pearlite nodule and the effect of various substitutional alloy elements on the eutectoid transformation temperature and effective carbon content, respectively. Peritectic and peritectoid phase equilibria are very common in several binary systems. The article reviews structures from peritectoid reactions and details the formation of peritectic structures that can occur by at least three mechanisms: peritectic reaction, peritectic transformation, and direct precipitation of beta from the melt.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006221
EISBN: 978-1-62708-163-4
.... age hardening allotropy alloying aluminum-copper system binary system Clausius-Clapeyron equation crystal structure Gibbs phase rule heat treatment iron-carbon phase diagram Lever rule phase diagram polymorphism solid-state transformation solidification ternary diagrams Theorem of Le...
Abstract
The application of phase diagrams is instrumental in solid-state transformations for the processing and heat treatment of alloys. A unary phase diagram plots the phase changes of one element as a function of temperature and pressure. This article discusses the unary system that can exist as a solid, liquid, and/or gas, depending on the specific combination of temperature and pressure. It describes the accomplishment of conversion between weight percentage and atomic percentage in a binary system by the use of formulas. The article analyzes the effects of alloying on melting/solidification and on solid-state transformations. It explains the construction of phase diagrams by the Gibbs phase rule and the Lever rule. The article also reviews the various types of alloy systems that involve solid-state transformations. It concludes with information on the sources of phase diagram.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006203
EISBN: 978-1-62708-163-4
... Diagrams .” “C-Sc (Carbon - Scandium)” in the article “C (Carbon) Binary Alloy Phase Diagrams .” “Cr-Sc (Chromium - Scandium)” in the article “Cr (Chromium) Binary Alloy Phase Diagrams .” “Fe-Sc (Iron - Scandium)” in the article “Fe (Iron) Binary Alloy Phase Diagrams .” “Ga-Sc...
Abstract
This article is a compilation of binary alloy phase diagrams for which scandium (Sc) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006217
EISBN: 978-1-62708-163-4
... system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase. binary phase diagrams crystallographic data phase data tungsten binary system THIS ARTICLE includes systems where tungsten is the first-named...
Abstract
This article is a compilation of binary alloy phase diagrams for which tungsten (W) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006212
EISBN: 978-1-62708-163-4
... system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase. binary phase diagrams crystallographic data phase data thorium binary system THIS ARTICLE includes systems where thorium is the first-named element...
Abstract
This article is a compilation of binary alloy phase diagrams for which thorium (Th) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006216
EISBN: 978-1-62708-163-4
... system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase. binary phase diagrams crystallographic data phase data vanadium binary system THIS ARTICLE includes systems where vanadium is the first-named...
Abstract
This article is a compilation of binary alloy phase diagrams for which vanadium (V) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006215
EISBN: 978-1-62708-163-4
....” “Bi-U (Bismuth - Uranium)” in the article “Bi (Bismuth) Binary Alloy Phase Diagrams.” “C-U (Carbon - Uranium)” in the article “C (Carbon) Binary Alloy Phase Diagrams.” “Cr-U (Chromium - Uranium)” in the article “Cr (Chromium) Binary Alloy Phase Diagrams.” “Fe-U (Iron - Uranium...
Abstract
This article is a compilation of binary alloy phase diagrams for which uranium (U) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006162
EISBN: 978-1-62708-163-4
... Abstract This article is a compilation of binary alloy phase diagrams for which iron (Fe) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system...
Abstract
This article is a compilation of binary alloy phase diagrams for which iron (Fe) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005190
EISBN: 978-1-62708-187-0
... of flotation of inclusions in stagnant melts as a function of inclusion size. Melt depth: A, 50 mm (2 in.); B, 500 mm (20 in.); C, 2000 mm (80 in.). Source: Ref 7 Thermodynamics of Ferrous Systems For binary systems, only the iron-carbon and iron-silicon systems are discussed in this article...
Abstract
This article addresses two issues on thermodynamics, namely, the calculation of solubility lines and the calculation of the activity of various components. It discusses alloying elements in terms of their influence on the activity of carbon. The article describes the desulfurization and deoxidation of cast iron and steel. It illustrates the thermodynamics of the iron-carbon system and the iron-silicon system. The article examines solubility and saturation degrees of carbon in multicomponent iron-carbon systems. One of the main applications of the thermodynamics of the iron-carbon system is the calculation of structure-composition correlations. The article concludes with information on the structural diagrams for cast iron: the Maurer diagram and the Laplanche diagram.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006151
EISBN: 978-1-62708-163-4
... system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase. binary phase diagrams carbon binary system crystallographic data phase data THIS ARTICLE includes systems where carbon is the first-named element...
Abstract
This article is a compilation of binary alloy phase diagrams for which carbon (C) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006173
EISBN: 978-1-62708-163-4
... system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase. binary phase diagrams crystallographic data lanthanum binary system phase data THIS ARTICLE includes systems where lanthanum is the first-named...
Abstract
This article is a compilation of binary alloy phase diagrams for which lanthanum (La) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006167
EISBN: 978-1-62708-163-4
... in the binary pair. Additional binary systems that include hafnium are provided in the following locations in this Volume: “Be-Hf (Beryllium - Hafnium)” in the article “Be (Beryllium) Binary Alloy Phase Diagrams.” “C-Hf (Carbon - Hafnium)” in the article “C (Carbon) Binary Alloy Phase Diagrams...
Abstract
This article is a compilation of binary alloy phase diagrams for which hafnium (Hf) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006246
EISBN: 978-1-62708-163-4
... diagrams involving carbon and iron, the symbol M is used to represent both iron and the other metallic element when the two metals substitute for each other in a carbide phase. carbide phase carbon iron ternary alloy phase diagram Introduction The 115 ternary systems presented...
Abstract
This article presents ternary alloy phase diagrams to be used primarily by engineers to solve industrial problems. The diagrams presented are for stable equilibrium conditions, with the exception of metastable conditions for some diagrams involving carbon and iron. In some ternary diagrams involving carbon and iron, the symbol M is used to represent both iron and the other metallic element when the two metals substitute for each other in a carbide phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006213
EISBN: 978-1-62708-163-4
... system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase. binary phase diagrams crystallographic data phase data titanium binary system THIS ARTICLE includes systems where titanium is the first-named...
Abstract
This article is a compilation of binary alloy phase diagrams for which titanium (Ti) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006205
EISBN: 978-1-62708-163-4
... system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase. binary phase diagrams crystallographic data phase data silicon binary system THIS ARTICLE includes systems where silicon is the first-named element...
Abstract
This article is a compilation of binary alloy phase diagrams for which silicon (Si) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
1