1-20 of 355 Search Results for

beta alloys

Sort by
Image
Published: 01 June 2016
Fig. 16 Yield and creep strengths of alpha alloy Ti-5Al-2.5Sn and alpha-beta alloy Ti-8Mn for a range of temperatures. Source: Ref 1 More
Image
Published: 01 June 2016
Fig. 21 Microstructure of forge titanium alpha-beta alloy (Ti-6Al-2Sn-4Zr-6Mo) with varying amounts of primary alpha and secondary acicular alpha in matrix of beta that transformed by aging (dark). (a) Solution treated 2 h at 870 °C (1600 °F), water quenched, aged 8 h at 595 °C (1100 °F More
Image
Published: 01 June 2016
Fig. 33 Effect of cooling rate on the microstructure of an alpha-beta alloy (Ti-6Al-4V). (a) α′ + β; prior beta grain boundaries. (b) Primary α and α′ + β. (c) Primary α and α′ + β. (d) Primary α and metastable β. (e) Acicular α + β; prior beta grain boundaries. (f) Primary α and acicular α More
Image
Published: 01 June 2016
Fig. 22 Fatigue crack nucleation sites in Ti-6Al-4V alpha-beta alloy. (a) Fully lamellar microstructure. (b) Fully equiaxed microstructure. (c) Duplex microstructure More
Image
Published: 01 June 2016
Fig. 25 Comparison of notched fatigue curves for beta alloy Ti-10V-2Fe-3Al and alpha-beta alloy Ti-6Al-4V. For Ti-10V-2Fe-3Al, R = 0.05 and F = K t = 2.9. For solution-treated-and-annealed (STA) Ti-6Al-4V plate, R = 0.1 and K t = 3. More
Image
Published: 01 June 2016
Fig. 26 Comparison of fatigue crack growth rates ( da / dN ) for beta alloy Ti-10V-2Fe-3Al and alpha alloy Ti-6Al-4V. For Ti-10V-2Fe-3Al, R = 0.05 and F = 1 to 30 Hz. For mill-annealed (MA) Ti-6Al-4V, R = 0.08 and F = 1 to 25 Hz. For recrystallization-annealed (RA) Ti-6Al-4V, R = 0.08 More
Image
Published: 01 January 1990
Fig. 27 Comparison of fatigue crack growth rates of beta alloy Ti-10V-2Fe-3Al with mill-annealed (MA) and recrystallization-annealed (RA) Ti-6Al-4V More
Image
Published: 01 December 2004
Fig. 22 Ti-6Al-6V-2Sn alpha-beta alloy forging, solution treated, quenched, and aged. Hand forging at 925 °C (1700 °F), solution treated for 2 h at 870 °C (1600 °F), water quenched, aged 4 h at 595 °C (1100 °F), and air cooled. (a) “Primary” alpha grains (light) in a matrix of transformed beta More
Image
Published: 01 December 2004
Fig. 57 Structure from cold-rolled and aged foil of beta alloy Ti-15V-3Cr-3Al-3Sn. Oxalic tint etch for 3 s, 1 h vibratory polisher, non-nap polyester cloth and alumina More
Image
Published: 01 December 2004
Fig. 58 Structure from cold-rolled and aged foil of beta alloy Ti-15V-3Cr-3Al-3Sn. Oxalic tint etch for 15 s, 1 h vibratory polisher, non-nap polyester cloth and alumina. The white regions indicate there was no or a lesser heat treat response (alpha precipitation). More
Image
Published: 01 June 2016
Fig. 7 Phase diagram schematics for beta-stabilized alloys. (a) Beta isomorphous. (b) Beta eutectoid. Source: Revised from Ref 2 with tungsten as isomorphous element. More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001415
EISBN: 978-1-62708-173-3
... Abstract This article emphasizes the physical metallurgy of titanium and titanium alloys along with their microstructural response to fusion welding condition. The titanium alloys are classified into unalloyed or commercially pure titanium, alpha and near-alpha alloys, alpha-beta alloys...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002409
EISBN: 978-1-62708-193-1
... in the article include alpha-beta alloys, Ti-6AI-4V; alpha alloys, Ti-8Al -1Mo-IV, Ti-5AI-2.5Sn, Ti-6242S; and beta alloys, solute-lean beta alloys and solute-rich beta alloys. alpha alloys alpha-beta alloys beta alloys fatigue fracture modes fatigue life fracture toughness mechanical strength...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... Abstract This article focuses on the physical metallurgy and weldability of four families of titanium-base alloys, namely, near-alpha alloy, alpha-beta alloy, near-beta, or metastable-beta alloy, and titanium based intermetallics that include alpha-2, gamma, and orthorhombic systems...
Image
Published: 01 January 1996
Fig. 6 Yield strength vs. toughness of two solute-lean beta titanium alloys. (a) Beta-CEZ: Fracture toughness vs. yield strength comparison. Specimens were 70 mm (2.7 in.) diam α + β rolled bar (equiaxed structure) and 80 mm (3.1 in.) diam “through the β transus” forged bar (necklaced More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006270
EISBN: 978-1-62708-169-6
... Abstract The response of titanium and titanium alloys to heat treatment depends on the composition of the metal, the effects of the alloying elements on the alpha-beta crystal transformation, and the thermomechanical processing utilized during processing of the alloy. This article provides...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001081
EISBN: 978-1-62708-162-7
... and chemical properties, including chemical composition, corrosion resistance, and chemical reactivity. The article discusses the effects of alloying elements in titanium alloys, and describes the classes of titanium alloys, namely, alpha alloys, alpha-beta alloys, and beta alloys. It also describes...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006283
EISBN: 978-1-62708-169-6
... Abstract This article provides a detailed discussion on heat treatment of titanium alloys such as alpha alloys, alpha-beta alloys, and beta and near-beta alloys. Common processes include stress-relief, annealing, solution treating, aging, quenching, and age hardening. It provides information...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003779
EISBN: 978-1-62708-177-1
... Abstract This article describes the fundamentals of titanium metallographic sample preparation. Representative micrographs are presented for each class of titanium alloys, including unalloyed titanium, alpha alloys, alpha-beta alloys, and beta titanium alloys. The article provides information...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys, beta alloys...