Skip Nav Destination
Close Modal
Search Results for
beryllium processing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 389 Search Results for
beryllium processing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003165
EISBN: 978-1-62708-199-3
... conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when...
Abstract
Beryllium possesses an unusual combination of physical and mechanical properties, suiting it for specialized applications where its relatively high cost can be justified. It has very low density, a moderately high melting point, high elastic modulus, and good electrical and thermal conductivity. The article describes structural, instrument, and optical grade beryllium and the corresponding compositional ranges. It also discusses processing and product forms as well as factors affecting corrosion resistance. The article concludes with a short note on health and safety considerations when handling beryllium.
Image
Published: 01 January 1989
Image
Published: 30 September 2015
Fig. 2 Near-net shape O-30-grade beryllium mirror blank segment processed by hot isostatic pressing for the James Webb Space Telescope
More
Image
Published: 01 January 1990
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001086
EISBN: 978-1-62708-162-7
.... Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium. beryllium beryllium...
Abstract
Beryllium is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications. Almost all of the beryllium in use is a powder metallurgy (P/M) product. Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001456
EISBN: 978-1-62708-173-3
... is again becoming available in several compositions. Because the two metals are mutually immiscible, the alloys are processed to produce a fine structure of aluminum and beryllium. Beryllium alloy compositions and physical properties are shown in Table 1 . Although beryllium has a hexagonal close...
Abstract
This article provides a discussion on filler metal selection, brazing procedures, and brazing equipment for brazing refractory metals. These include molybdenum, tungsten, niobium, and tantalum, and reactive metals. Commercially pure and alpha titanium alloys, alpha-beta alloys, zirconium alloys, and beryllium alloys are some reactive metals discussed in the article.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003827
EISBN: 978-1-62708-183-2
... elements and major impurities are tabulated. The article discusses the in-process problems and procedures that are common but avoidable when processing beryllium and aluminum-beryllium composites. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical...
Abstract
This article describes the four major conditions that can cause beryllium to corrode in air. These include beryllium carbide particles exposed at the surface; surface contaminated with halide, sulfate, or nitrate ions; surface contaminated with other electrolyte fluids; and atmosphere that contains halide, sulfate, or nitrate ions. The article provides information on the behavior of beryllium under the combined effects of high-purity water environment, stress and chemical environment, and high-temperature environment. The compositions of the structural grades for intentionally controlled elements and major impurities are tabulated. The article discusses the in-process problems and procedures that are common but avoidable when processing beryllium and aluminum-beryllium composites. It also describes the types of coatings used on beryllium and aluminum-beryllium. These include chemical conversion coatings, anodized coatings, plated coatings, organic coatings, and plasma-sprayed coatings.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006058
EISBN: 978-1-62708-175-7
...% infrared reflectivity, which is used to advantage in several defense-based optical systems. Fig. 2 Near-net shape O-30-grade beryllium mirror blank segment processed by hot isostatic pressing for the James Webb Space Telescope The low atomic number of beryllium keeps absorption of radiation...
Abstract
This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium and aluminum-beryllium alloys such as extrusion, rolling, welding, joining, and machining are discussed. The article discusses quality control and provides information on the structural, optical, and high-purity grades of beryllium.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002191
EISBN: 978-1-62708-188-7
... in an approved waste container. Surface Damage When cutting beryllium, the machining processes introduce an altered layer of material at the part surface. This layer, termed the surface-damaged or machining-damaged layer, extends from 0.025 to 0.50 mm (0.001 to 0.020 in.) in depth, depending on the method...
Abstract
This article discusses the properties of beryllium metals that require special attention when machining. It provides information on the considerations of S65 and selects 65 beryllium materials that are used for conducting tool wear studies and surface damage studies. The article highlights some of the precautions to be followed while machining beryllium metals. Information on the cutting oils, cutting tools, and speeds and feeds used in turning the beryllium are also provided. The article describes the chemical milling and photochemical machining methods that are used for etching beryllium components.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001071
EISBN: 978-1-62708-162-7
... cutters and as permeable electric contacts. Because beryllium-copper and other beryllium-containing alloys are precipitation hardenable, they can be tailored across a wide range of property combinations. Recent advances in composition control, processing techniques, and recycling technology have...
Abstract
Addition of beryllium, up to about 2 wt″, produces dramatic effects in copper, nickel, aluminum, magnesium, gold, zinc, and other base metal alloys. This article provides information on the chemical composition, microstructure, heat treatment, fabrication characteristics, production steps and physical metallurgy of beryllium-copper, beryllium-nickel, and beryllium-aluminum alloy, and tabulates their mechanical, electrical and physical properties, and temper designations. It describes the important features of this alloy group, including information on safe handling. Additionally, the article presents examples of the beneficial properties of beryllium-copper alloys and quantifies some of the major reasons for their selection for particular applications.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005142
EISBN: 978-1-62708-186-3
... of a furnace overrun. However, if parts require cleaning after forming and if grit blasting is used, the wet method is recommended. Wet blasting minimizes the possibility that beryllium oxide dust will contaminate the surrounding atmosphere. Adequate ventilation must be provided if parts are processed...
Abstract
This article describes the effect of temperature, composition, strain rate, and fabrication history on the results obtained in the forming of beryllium as well as the safety measures required. It provides information on the equipment, tooling, dies, and workpieces used for forming beryllium. The article discusses the role of lubrication, blank development, tool designs, and strain rates, in deep drawing. It also provides information on the tooling and applications of three-roll bending, stretch forming, and spinning.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003770
EISBN: 978-1-62708-177-1
... of the mill production process. Components should be examined before and after fabricator heat treatment. Health and Safety Despite low concentrations of beryllium in commercial copper-beryllium and nickel-beryllium alloys (nominally, 2% Be by weight or less), these materials can be hazardous to health...
Abstract
The two major types of beryllium-containing alloys are copper-berylliums and nickel-berylliums. The most widely used beryllium-containing alloys are wrought copper-berylliums, which provide good strength while retaining useful levels of electrical and thermal conductivity. This article provides information on the specimen preparation procedures, macroexamination, microexamination, and microstructures of beryllium, copper-beryllium alloys, as well as nickel-beryllium alloys. It also discusses health and safety measures associated with the specimen preparation of beryllium and beryllium-containing alloys.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002411
EISBN: 978-1-62708-193-1
... to be precipitation hardened, C70250 and beryllium copper alloys can be tailored across a wide range of strength and conductivity combinations. Copper alloy temper designations Table 2 Copper alloy temper designations ASTM B 601 temper designation (a) Process (b) O60 Soft annealed H01 CW...
Abstract
Copper alloys are classified by the International Unified Numbering System designations to identify alloy groups by major alloying element. This article presents the designations and compositions of various copper alloys, such as brasses, nickel silvers, bronzes, beryllium coppers, and spinodal alloys. It discusses the fatigue testing of the copper alloys and tabulates the tensile and fatigue strengths of the copper alloys. The article schematically illustrates S-N curves for the solid-solution (non-aging) strengthened alloys. It concludes with a discussion on the role of microstructure in the fatigue performance of beryllium copper alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006281
EISBN: 978-1-62708-169-6
..., nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys. beryllium-copper alloys cast aluminum bronze cast beryllium...
Abstract
Bronzes generally are used to describe many different copper-base alloys in which the major alloying addition is neither zinc nor nickel. They are generally classified by their major alloying elements, for example, tin bronzes with phosphorus used as a deoxidizer, aluminum bronzes, nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys.
Image
Published: 30 September 2015
Fig. 15 Schematic of cold isostatic press (CIP) and extrusion powder consolidation process for aluminum-beryllium alloys. HIP, hot isostatic press
More
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005711
EISBN: 978-1-62708-171-9
.... Additional desirable qualities made possible by thermal spraying include in-place machine repair, low cost and time of manufacture (fewer processing steps), and high material usage efficiency (especially for expensive materials such as beryllium). An example of a PFC test component with a 10 mm (400 mils...
Abstract
Nuclear power plants benefit from thermal spray coatings for corrosion and erosion minimization and dimensional restoration of worn parts. This article provides a detailed discussion on the advantages of thermal spray coatings, fission reactor component coatings, and coatings for nuclear fuel processing before and after irradiation for power plant applications. Nuclear fusion research is divided into two primary fields of study categorized by the method for confining the fusion fuel: magnetic confinement fusion and inertial confinement fusion.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001438
EISBN: 978-1-62708-173-3
... that must be removed prior to welding. The formation of these oxides during the welding process must be prevented by shielding gas or by fluxing, in conjunction with the use of the appropriate welding current. The oxides of nickel interfere with arc welding less than those of beryllium or aluminum...
Abstract
Copper and copper alloys offer a unique combination of material properties that makes them advantageous for many manufacturing environments. This article begins with a discussion on common metals that are alloyed with copper to produce the various copper alloys. It then reviews the factors that affect the weldability of copper alloys, including thermal conductivity of the alloy being welded, shielding gas, type of current used during welding, joint design, welding position, and surface condition. The article provides information on arc welding processes such as gas-metal arc welding, shielded metal arc welding, submerged arc welding, plasma arc welding, and gas-tungsten arc welding. It concludes with a discussion on safe welding practices.
Image
Published: 01 December 2004
Fig. 20 Same alloy (C17200) and processing as in Figure 19 but aged 3 h at 360 °C (680 °F) after solution treatment. Typical hardness is 37 HRC. Copper-beryllium precipitates at grain boundaries and within α grains. Etchant 3, Table 2 . 300×
More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
... treating, stabilization treatment, age hardening, stress relieving, and stress equalizing. Discussion of furnaces, fixtures, and atmospheres is included. Nickel alloys used for the heat treatment processes include corrosion-resistant nickel alloys, heat-resistant nickel alloys, nickel-beryllium alloys...
Abstract
This article provides information on nickel alloying elements, and the heat treatment processes of various nickel alloys for applications requiring corrosion resistance and/or high-temperature strength. These processes are homogenization, annealing, solution annealing, solution treating, stabilization treatment, age hardening, stress relieving, and stress equalizing. Discussion of furnaces, fixtures, and atmospheres is included. Nickel alloys used for the heat treatment processes include corrosion-resistant nickel alloys, heat-resistant nickel alloys, nickel-beryllium alloys, special-purpose alloys such as nitinol shape memory alloys, low-expansion alloys, electrical-resistance alloys and soft magnetic alloys. Finally, the article focuses on heat treatment modeling for selecting the appropriate heat treatment process.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006080
EISBN: 978-1-62708-175-7
..., transmission parts, and hand tool components. Hot pressing is used primarily for specialty materials such as tungsten carbide, beryllium, and ceramics. Hot pressing is also used as a consolidation process to produce billets for further processing by conventional forging or extrusion of materials such as high...
1