Skip Nav Destination
Close Modal
Search Results for
beryllium classification
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 131 Search Results for
beryllium classification
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001086
EISBN: 978-1-62708-162-7
... classification beryllium grades mining powder consolidation methods powder production refining BERYLLIUM is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications...
Abstract
Beryllium is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications. Almost all of the beryllium in use is a powder metallurgy (P/M) product. Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006058
EISBN: 978-1-62708-175-7
... Abstract This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium...
Abstract
This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium and aluminum-beryllium alloys such as extrusion, rolling, welding, joining, and machining are discussed. The article discusses quality control and provides information on the structural, optical, and high-purity grades of beryllium.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001438
EISBN: 978-1-62708-173-3
... contain alloying elements to enhance a specific property or characteristic, for example, machinability Many copper alloys have common names, such as oxygen-free copper (99.95% Cu min), beryllium copper (0.2 to 2.0% Be), Muntz metal (Cu-40Zn), Naval brass (Cu-39.25Zn-0.75Sn), and commercial bronze...
Abstract
Copper and copper alloys offer a unique combination of material properties that makes them advantageous for many manufacturing environments. This article begins with a discussion on common metals that are alloyed with copper to produce the various copper alloys. It then reviews the factors that affect the weldability of copper alloys, including thermal conductivity of the alloy being welded, shielding gas, type of current used during welding, joint design, welding position, and surface condition. The article provides information on arc welding processes such as gas-metal arc welding, shielded metal arc welding, submerged arc welding, plasma arc welding, and gas-tungsten arc welding. It concludes with a discussion on safe welding practices.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
..., nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low...
Abstract
The properties of copper alloys occur in unique combinations found in no other alloy system. This article focuses on the major and minor alloying additions and their impact on the properties of copper. It describes major alloying additions, such as zinc, tin, lead, aluminum, silicon, nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low-pressure die casting. The article provides information on the types of copper castings and tabulates the nominal chemical composition and mechanical properties of several cast alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006281
EISBN: 978-1-62708-169-6
..., nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys. beryllium-copper alloys cast aluminum bronze cast beryllium...
Abstract
Bronzes generally are used to describe many different copper-base alloys in which the major alloying addition is neither zinc nor nickel. They are generally classified by their major alloying elements, for example, tin bronzes with phosphorus used as a deoxidizer, aluminum bronzes, nickel-aluminum bronzes, silicon bronzes, and beryllium bronzes. This article briefly discusses the types, hardening mechanisms, heat treatment processes, applications, and mechanical properties of these bronzes and high-copper alloys.
Book Chapter
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002185
EISBN: 978-1-62708-188-7
... Alloys that are difficult to machine, including the nonleaded coppers, low-zinc brasses and nickel silvers, the phosphor bronzes and aluminum bronzes, cupro-nickel, and some beryllium copper Machinability Ratings Table 1 lists the nominal compositions and machinability ratings of the most...
Abstract
This article begins with a discussion on machinability ratings of copper and copper alloys and then describes the factors influencing the machinability ratings. It explains the effect of alloying elements, cold working, and cutting fluid on the machinability of copper and copper alloys. In addition, the article provides a comprehensive discussion on various machining techniques that are employed for machining of copper and copper alloys: turning, planing, drilling, reaming, tapping and threading, multiple operation machining, milling, slitting and circular sawing, power band sawing and power hacksawing, grinding, and honing.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004129
EISBN: 978-1-62708-184-9
.... In 1971, the Electronics Command (ECOM) investigated general corrosion caused by the effects of plastics decomposition products on beryllium-copper contacts ( Ref 12 ). In 1974, ECOM investigated the effects of corrosion on waveguides ( Ref 13 ). Galvanic corrosion, crevice corrosion, and stress-corrosion...
Abstract
This article provides a historical review of corrosion problems in military electronic equipment. It describes the importance of design for corrosion control of an electronic black box used to contain electrical equipment that provides various functions. The article illustrates corrosion control aspects, such as the position of printed circuit boards (PCBs) and proper location of connectors for insertion of the PCBs. It discusses various materials and alloys considered for connectors, PCB contacts, and circuits. The article concludes with a discussion on the effects of contaminants on the electronic black box.
Book Chapter
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
... strengthening heat treatment homogenizing precipitation hardening quench hardening solid-solution strengthening spinodal-hardening alloys stress relieving tempering COPPER AND COPPER ALLOYS constitute a major classification of commercial metals. They are widely used because of their excellent...
Abstract
This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening treatments such as precipitation hardening, spinodal hardening, order hardening, and quench hardening and tempering. The article presents tables that list the compositions and mechanical properties of copper alloys. It also discusses two strengthening mechanisms of copper alloys, solid-solution strengthening and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005856
EISBN: 978-1-62708-167-2
... fluxes Copper-nickel alloys Good Easily soldered with intermediate and corrosive-type fluxes Copper-chromium and beryllium-copper Good Requires intermediate and corrosive-type fluxes Copper-silicon alloys Fair Silicon produces refractory oxides that require use of corrosive fluxes...
Abstract
This article focuses on the process design set-up procedure for brazing and soldering. It provides a detailed account of the types of base metals that can be joined by these processes, and reviews the factors to be considered to enhance the joint design. Criteria for selection of the right induction heating equipment to carry out the brazing or soldering operation are also provided. The article describes the types of brazing filler metals and joint designs. It also presents the types of inspection methods, namely, mechanical and visual, used to determine the quality of the brazed joint. Important considerations for the automation of induction-heated brazing applications are also discussed. The article concludes by emphasizing the need for documenting an in-control process which is a vitally important reference for questions or problems arising in the machine settings or part quality.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003206
EISBN: 978-1-62708-199-3
... 17–22 E70XX 480–500 70–72 390–420 57–60 17–25 E80XX 550 80 460–550 67–80 16–24 E90XX 620 90 530–620 77–90 14–24 E100XX 690 100 600 87 13–20 E110XX 760 110 670–760 97–110 15–20 E120XX 830 120 740–830 107–120 14–18 Classification (b) Flat position...
Abstract
Arc welding methods can be classified into shielded metal arc welding, flux-cored arc welding, submerged arc welding, gas metal arc welding, gas tungsten arc welding, plasma arc welding, plasma-metal inert gas (MIG) welding, and electroslag and electrogas welding. This article provides information on process capabilities, principles of operation, power sources, electrodes, shielding gases, flux, process variables, and advantages and disadvantages of these arc welding methods. It presents information about the arc welding procedures of hardenable carbon and alloy steels, cast irons, stainless steels, heat-resistant alloys, aluminum alloys, copper and copper alloys, magnesium alloys, nickel alloys, and titanium and titanium alloys.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003814
EISBN: 978-1-62708-183-2
...: aluminum, beryllium, cobalt, copper, gold, hafnium, iridium, lead, magnesium, nickel, niobium (columbium), osmium, palladium, platinum, rhodium, ruthenium, silver, tantalum, tin, titanium, uranium, zinc, and zirconium. Also covered in this Section are several specialty nonferrous products that cannot...
Abstract
Nonferrous metals and alloys are widely used to resist corrosion. This article describes the corrosion behavior of the most widely used nonferrous metals, such as aluminum, copper, nickel, and titanium. It also provides information on several specialty nonferrous products that cannot easily be categorized by elemental base.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001065
EISBN: 978-1-62708-162-7
... 57–1 20 C16500 98.6 Cu, 0.8 Cd, 0.6 Sn F, R, W 276–655 40–95 97–490 14–71 53–1.5 20 C17000 (beryllium-copper) 99.5 Cu, 1.7 Be, 0.20 Co F, R 483–1310 70–190 221–1172 32–170 45–3 20 C17200 (beryllium-copper) 99.5 Cu, 1.9 Be, 0.20 Co F, R, W, T, P, S 469–1462 68–212 172...
Abstract
Copper and copper alloys constitute one of the major groups of commercial metals due to their excellent electrical and thermal conductivities, corrosion and fatigue resistance, ease of fabrication, and good strength. This article lists the types, properties, fabrication characteristics, corrosion ratings, temper designations, and applications of wrought copper and copper alloys. It also presents an outline of the most commonly used mechanical working and heat treating processes. The copper industry in the United States is broadly composed of two segments: producers (mining, smelting, and refining companies) and fabricators (wire mills, brass mills, foundries, and powder plants). The article discusses copper production methods and describes major changes in the structure of the U.S. copper and copper alloys industry.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005848
EISBN: 978-1-62708-167-2
... the molecular sieves. Source: Ref 2 Fig. 3 Flow diagram of nitrogen-base atmosphere generator incorporating a monoethanolamine (MEA) scrubbing system. Temperature (°C) is indicated in boxes; pressure (kPa) appears in circles. Source: Ref 2 Classification and application of principal furnace...
Abstract
Controlled atmosphere chambers are used to control the surface chemistry of the metals that are being processed. This article focuses on the various types of controlled atmospheres used in induction heat treating and brazing, namely, inert gas atmospheres based on argon and helium; prepared and commercial nitrogen-base atmospheres; and brazing atmospheres. It provides detailed information on two types of controlled atmosphere chambers: atmosphere and vacuum. The article also describes the selection factors, advantages, and disadvantages of these chambers.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003634
EISBN: 978-1-62708-182-5
... and nonferrous alloys. Information on the effect of hydrogen on fracture characteristics is available in the article “Modes of Fracture” in Fractography , Volume 12 of ASM Handbook , formerly Metals Handbook , 9th ed. Classification of Hydrogen Processes The specific types of hydrogen damage have...
Abstract
Hydrogen damage is a form of environmentally assisted failure that results from the combined action of hydrogen and residual or applied tensile stress. This article classifies the various forms of hydrogen damage and summarizes the theories that seek to explain these types of degradation. It reviews hydrogen degradation in specific ferrous and nonferrous alloys, namely, iron-base alloys, nickel alloys, aluminum alloys, copper alloys, titanium alloys, zirconium alloys, and vanadium, niobium, tantalum, and their alloys. An outline of hydrogen damage in intermetallic compounds is also provided.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003131
EISBN: 978-1-62708-199-3
... characteristics, markets, and applications of copper and its alloys. It contains several tables that provide helpful information on the chemical composition, classification, designation, uses, and mechanical properties of wrought copper and copper alloys. alloy classification alloy designation chemical...
Abstract
Copper and copper alloys are widely used because of their excellent electrical and thermal conductivities, outstanding resistance to corrosion, and ease of fabrication, together with good strength and fatigue resistance. This article provides an overview of property and fabrication characteristics, markets, and applications of copper and its alloys. It contains several tables that provide helpful information on the chemical composition, classification, designation, uses, and mechanical properties of wrought copper and copper alloys.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
...), beryllium copper (0.2 to 2.0% Be), Muntz metal (Cu-40Zn), Naval brass (Cu-39.25Zn-0.75Sn), and commercial bronze (Cu-10Zn). A more standardized system of identification is the unified Numbering System (UNS). In this system, wrought alloys of copper are designated by numbers 1 xxxx to 7 xxxx , and cast...
Abstract
The selection of surface treatments for copper and copper alloys is generally based on application requirements for appearance and corrosion resistance. This article describes cleaning, finishing, and coating processes for copper and copper alloys. These processes include pickling and bright dipping, abrasive blast cleaning, chemical and electrochemical cleaning, mass finishing, polishing and buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
.... Designation of Steel Alloys Steel grades follow a reasonable classification scheme. The plain carbon steels are designated as 10 xx grade, where the xx indicates the weight percentage of carbon in the steel. For example, 1050 contains 0.50% C. The 15 xx grades are plain carbon but with higher amounts...
Abstract
The warm and hot working of metals provide the ability to shape important materials into component shapes that are useful in a variety of applications requiring strength, toughness, and ductility. This article focuses on a variety of metals that can be hot or warm worked, and describes the characteristics and processing considerations of each metal. It discusses forging because it is a versatile metalworking process and performed at cold, warm, and hot working temperatures. The article also presents the applications of steels, stainless steels, aluminum alloys, titanium alloys, superalloys, and copper alloys.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001492
EISBN: 978-1-62708-173-3
... represent the fuel tubes, while the smaller tubes simulate the spacers. This assembly ( Fig. 2 ) was brazed with the same brazing filler metal as the flat-plate assembly in Fig. 1 (vacuum, 1000 °C, or 1830 °F, for l0 min). Fig. 2 Beryllium oxide tubular assembly brazed with 49Ti-49Cu-2Be filler...
Abstract
This article describes the factors considered in the analysis of brazeability and solderability of engineering materials. These are the wetting and spreading behavior, joint mechanical properties, corrosion resistance, metallurgical considerations, and residual stress levels. It discusses the application of brazed and soldered joints in sophisticated mechanical assemblies, such as aerospace equipment, chemical reactors, electronic packaging, nuclear applications, and heat exchangers. The article also provides a detailed discussion on the joining process characteristics of different types of engineering materials considered in the selection of a brazing process. The engineering materials include low-carbon steels, low-alloy steels, and tool steels; cast irons; aluminum alloys; copper and copper alloys; nickel-base alloys; heat-resistant alloys; titanium and titanium alloys; refractory metals; cobalt-base alloys; and ceramic materials.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... 5.90 Chromium 4.75 8.31 Tin 2.53 4.43 Tin 3.46 6.06 Brass (sheet) 2.38 4.17 Titanium 3.09 5.41 Beryllium-copper 1.97 3.45 Brass (sheet) 2.87 5.02 Cadmium 1.68 2.94 Al-Cu alloy sheet 2.50 4.38 Phosphor bronze (ingot) 1.63 2.85 Beryllium-copper 2.23 3.90 18/8...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
... angles from 60 to 120° are stable and give good weld penetration depth-to-width ratios ( Ref 7 ). Electrodes with smaller included angles (5 to 30°) are used for grooved weld joints to eliminate arcing to the part side walls. Classification of alloying elements in selected tungsten alloy electrodes...
Abstract
The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process. It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding.
1