Skip Nav Destination
Close Modal
Search Results for
bertrandite
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3 Search Results for
bertrandite
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001086
EISBN: 978-1-62708-162-7
... While a number of beryllium-containing minerals have been identified, only beryl (3BeO-Al 2 O 3 -6SiO 2 ) and bertrandite (4BeO-2SiO 2 -H 2 O) have been commercially significant to date. Beryl occurs in isolated pockets in pegmatites and, with the possible exception of operations in the Soviet Union...
Abstract
Beryllium is a metal with an unusual combination of physical and mechanical properties that make it particularly effective in optical components, precision instruments, and specialized aerospace applications. Almost all of the beryllium in use is a powder metallurgy (P/M) product. Beginning with an overview of the mining and refining processes of beryllium, this article discusses powder production and consolidation methods, beryllium grades and their designations, and the protective measures that have been enacted to reduce exposure to beryllium.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006058
EISBN: 978-1-62708-175-7
...) and 50% reflectivity of optical white light Up to 17 times more transparent to x-rays than aluminum Production of Powders Bertrandite ore (Be 4 Si 2 O 7 (OH) 2 ) and beryl ore (3BeO-Al 2 O 3 -6SiO 2 ) are mined in the state of Utah and international sources. The ore is decomposed and purified...
Abstract
This article briefly describes the production of beryllium powder and beryllium/beryllium oxide metal-matrix powder. It discusses fully dense consolidation methods: vacuum hot pressing, hot isostatic pressing, and cold isostatic pressing. Secondary fabrication operations of beryllium and aluminum-beryllium alloys such as extrusion, rolling, welding, joining, and machining are discussed. The article discusses quality control and provides information on the structural, optical, and high-purity grades of beryllium.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003052
EISBN: 978-1-62708-200-6
...) (formed by reacting B 2 O 3 and urea in nitrogen) High thermal conductivity High electrical resistivity High hardness Substrates in electronics Machining of ferrous metals BeO Beryllia powder from beryl or bertrandite ores High thermal conductivity High electrical resistivity Substrates...
Abstract
This article explains how ceramic powders are made. It begins by briefly describing the raw materials used in structural clay products, whitewares, refractories, and advanced ceramics. It then examines various additives that promote uniformity at different stages of the process. After a description of the comminution process (wet and dry milling methods), it discusses batching and mixing operations and granulation methods. The article also deals with the effect of process variables and the steps involved in chemical synthesis, including preparation from solution and gas-phase reactions, filtration and washing, and powder recovery techniques. It concludes with a discussion on characterization, centering on size distribution analysis, specific surface area, density, porosity chemical composition, phase, and surface composition.