Skip Nav Destination
Close Modal
Search Results for
bending fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1073 Search Results for
bending fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002400
EISBN: 978-1-62708-193-1
... Abstract Bending fatigue of carburized steel components is a result of cyclic mechanical loading. This article reviews the alloying and processing factors that influence the microstructures and bending fatigue performance of carburized steels. These include austenitic grain size, surface...
Abstract
Bending fatigue of carburized steel components is a result of cyclic mechanical loading. This article reviews the alloying and processing factors that influence the microstructures and bending fatigue performance of carburized steels. These include austenitic grain size, surface oxidation, retained austenite, subzero cooling, residual stresses, and shot peening. The article describes the analysis of bending fatigue behavior of the steels based on S-N curves that represents a stress-based approach to fatigue. It discusses the types of specimen used to evaluate bending fatigue in carburized steels. The stages of fatigue and fracture of the steels, namely crack initiation, stable crack propagation, and unstable crack propagation, are reviewed. The article analyzes the intergranular fracture at the prior-austenite grain boundaries of high-carbon case microstructures that dominates bending fatigue crack initiation and unstable crack propagation of direct-quenched carburized steels.
Image
Published: 01 January 1996
Fig. 3 Bending and shear fatigue strength. (a) Bending fatigue of various spring wire. (b) Shear fatigue curves for music wire (0.022 in. diam) at various stress ratios. Source: Ref 8
More
Image
Published: 01 January 2002
Fig. 23 Carbon steel shaft broken in rotating bending fatigue. Fatigue fracture initiated at numerous sites along a sharp snap ring groove; ratchet marks appear as shiny spots along the surface. Cracks coalesced into a single fatigue crack that—due to the bending stress distribution—grew most
More
Image
Published: 01 August 2013
Fig. 14 Results from rotating-bending fatigue. With the increase in fatigue resistance, the torque of the existing transmission gears could also be increased. Adapted from Ref 19
More
Image
Published: 15 January 2021
Fig. 23 Carbon steel shaft broken in rotating-bending fatigue. Fatigue fracture initiated at numerous sites along a sharp snap ring groove; ratchet marks appear as shiny spots along the surface. Cracks coalesced into a single fatigue crack that—due to the bending-stress distribution—grew most
More
Image
Published: 01 June 2024
Fig. 15 Reverse-bending fatigue showing (a) a fatigue surface with origins at the top, a region of ductile overload at the center, and fatigue from the other edge of the shaft at the bottom. The lighting is direct overhead light from a large light source. Postfracture damage is apparent
More
Image
Published: 01 January 1987
Fig. 217 Reversed bending fatigue of a 40-mm (1.6-in.) diam AISI 1046 steel shaft (30 HRC). Note the symmetrical fatigue pattern of beachmarks on each side, with the final rupture on the diameter. This indicates that each side of the shaft was subjected to the same maximum stress
More
Image
Published: 01 January 1987
Fig. 473 Rotating bending fatigue fracture of an AISI 4817 shaft, carburized and hardened to 60 HRC on the surface. Fracture initiated in six fillet areas around the periphery, near the runouts of six grooves. Each fatigue area propagated separately, but uniformly, inward to final rupture
More
Image
Published: 01 January 1987
Fig. 510 Bending-fatigue fracture in the heel of one tooth of a spiral bevel pinion of AISI 8617 steel, carburized and hardened to 57 HRC in the case. Fracture resulted from severe pitting. Note that pitting had begun in an adjoining tooth (near top). 0.75×
More
Image
Published: 01 January 1987
Fig. 511 Bending-fatigue fracture in two teeth of a reverse idler gear of AISI 8617 steel, carburized and hardened to 60 HRC in the case. Arrows point to the root fillets on both sides of each tooth, where fracture began due to excessive stress in these locations. ∼2×
More
Image
Published: 01 January 1987
Fig. 513 Bending-fatigue fractures in several teeth of a spur gear of AISI 8620 steel, carburized and hardened to 60 HRC in the case. The tooth marked A apparently broke first, as the result of a fatigue crack that originated in the fillet to the left of the tooth (arrow). After this tooth
More
Image
Published: 01 January 1987
Fig. 514 Surface of a bending-fatigue fracture in a tooth (upper tooth in this view) of a large spiral bevel pinion of AISI 8620 steel carburized and hardened to 60 HRC at the surface. The arrow marks the fatigue-crack origin, in the root fillet. The absence of this tooth resulted in fracture
More
Image
Published: 01 January 1987
Fig. 524 Surface of a bending-fatigue fracture in a tooth of a sprocket-drive pinion of AISI 8650 steel induction hardened to 58 to 60 HRC. The fatigue-crack origin is at a deep pit (arrow) in the tooth surface. Severe end loading produced other, smaller pits in the surfaces of the teeth
More
Image
Published: 01 January 2002
Fig. 12 Pushrod that fractured in bending fatigue after being fabricated by inertia welding. (a) Configuration and dimensions (given in inches). (b) and (c) Micrographs showing structure of decarburized inner surface and sound metal below the decarburized layer
More
Image
Published: 01 January 2002
Fig. 24 1040 steel fan shaft that fractured in reversed-bending fatigue. (a) Overall view of shaft. Dimensions given in inches. (b) Fracture surface showing diametrically opposed origins (arrows)
More
Image
Published: 01 January 2002
Fig. 12 Spiral bevel pinion showing classic tooth-bending fatigue. The origin is at midlength of the root radius on the concave (loaded) side. 0.4×
More
Image
Published: 01 January 2002
Fig. 14 Spur tooth pinion at 0.5× (top) and 1.5× (bottom). Tooth-bending fatigue originating at the root radius (arrows), loaded side, one-third the distance from the open end. Progression was to the bore.
More
Image
Published: 01 January 2002
Fig. 15 Spur pinion. Tooth-bending fatigue with origin at root radius of loaded side at one end of the tooth. 0.6×
More
Image
Published: 01 January 2002
Fig. 16 Spur pinion. Tooth-bending fatigue is at midlength of the tooth at the root radius, but the origin is at an inclusion located in the case/core transition. 55×
More
Image
Published: 01 January 2002
Fig. 17 Spiral bevel gear tooth. Tooth-bending fatigue with origin at the apex of the drilled bolt hole, which terminated just below the root radius. 0.5×
More
1