Skip Nav Destination
Close Modal
Search Results for
bead shape effects
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 454 Search Results for
bead shape effects
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 October 2011
Image
Published: 31 October 2011
Image
Published: 01 January 1993
Fig. 11 Effect of weld bead shape and solidification pattern on solidification cracking. (a) and (b) Concave versus convex bead shapes. Slightly convex bead shapes are preferred. (c) Preferred depth and width of weld bead. Deep, narrow beads should be avoided. (d) Effect of travel speed
More
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005177
EISBN: 978-1-62708-186-3
..., gooseneck punches, wiping dies, channel dies, arbor-type punches, box-forming dies, curling dies, beading dies, and cam-driven dies, with illustrations. It discusses the tool material selection for various operations. The article explains the procedures used for producing different shapes, including simple...
Abstract
This article discusses the principles of the press-brake forming process and its applicability with an example. It describes the types of press brakes and examines some considerations, which help in the selection of machine. The article provides information on flattening dies, gooseneck punches, wiping dies, channel dies, arbor-type punches, box-forming dies, curling dies, beading dies, and cam-driven dies, with illustrations. It discusses the tool material selection for various operations. The article explains the procedures used for producing different shapes, including simple boxlike parts, panels, flanged parts, architectural columns, fully closed parts, and semicircular parts. It examines the effect of work metal variables on results in press-brake operations. The article also reviews stock tolerances, design, and condition of machines and tools, which help in obtaining good dimensional accuracy.
Image
Published: 01 December 1998
Fig. 9 Effect of depth of flux layer on shape and penetration of submerged arc surface welds made at 800 A. (a) Flux layer too shallow, resulting in arc breakthrough (from loss of shielding), shallow penetration, and weld porosity or cracking. (b) Flux layer at correct depth for good weld-bead
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005150
EISBN: 978-1-62708-186-3
... ), of the bead. For any specific set of material, die condition, dimension W , and lubricant, the restraining force as a function of dimension D can be established in the laboratory by experimentation with a draw bead simulator (DBS). The results are illustrated in Fig. 6 . Fig. 6 Effect of depth...
Abstract
This article describes grade designations of the various sheet steels used for draw forming. It discusses the specifications associated with most sheet draw forming materials. The article examines the behavior of stress- and strain-based forming limit curve (FLC). It provides a discussion on three separate frictional conditions acting in a draw die. The frictional conditions include the metal passing through a draw bead, the metal clamped in the binder, and the metal sliding across a die radius. The article also explains the basic steps in the vehicle development process. The steps involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed on to the construction functions.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
... controls are discussed. arc stability bead shape effects electrode feed unit gas metal arc welding gun manipulation power source safety considerations shielding gas supply weld penetration weld quality welding electrodes welding gun GAS METAL ARC WELDING (GMAW) employs an electric arc...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
... follows. Welding Current Welding current has a direct influence on deposition rate, joint penetration, and the resulting internal and external bead shape. The type of current in conjunction with electrode size and ESO affects the deposition rate, penetration, and base-plate dilution. The effect...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005179
EISBN: 978-1-62708-186-3
... Abstract This article introduces process factors that influence die wear and lubrication for metal forming operations such as bending, spinning, stretching, deep drawing, and ironing. It discusses the effects of part shape, sheet thickness, tolerance requirements, sheet metal, and lubrication...
Abstract
This article introduces process factors that influence die wear and lubrication for metal forming operations such as bending, spinning, stretching, deep drawing, and ironing. It discusses the effects of part shape, sheet thickness, tolerance requirements, sheet metal, and lubrication on shallow forming dies. The article describes the wear of material for dies to draw round and square cup-shaped metal parts in a press. It also discusses the effect of process conditions on the shallow forming dies.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... but less severe, loose metal occurs in areas of low strain and may damage tooling if the loose sheet metal folds over onto itself. Tooling features such as depressions, embossments, or metal gainers within the part (also known as take-up beads or sausages, due to their characteristic shape) are effective...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001359
EISBN: 978-1-62708-173-3
... ratio. The effect of the magnitude of arc voltage on bead shape is shown in Fig. 6 . Increasing the arc voltage will produce a longer arc length and a correspondingly wider, flatter bead with less penetration. Higher voltage will increase flux consumption, which could then change deposit composition...
Abstract
Submerged arc welding (SAW) is an arc welding process in which the arc is concealed by a blanket of granular and fusible flux. This article provides a schematic illustration of a typical setup for automatic SAW and discusses the advantages and limitations and the process applications of SAW. The article discusses flux classification relative to production method, relative to effect on alloy content of weld deposit, and relative to basicity index. It describes the procedural variations and the effect of weld current, weld voltage, electrical stickout, travel speed, and flux layer depth on weld bead characteristics. The article concludes with information on weld defects, such as lack of fusion, slag entrapment, solidification cracking, hydrogen cracking, or porosity.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005128
EISBN: 978-1-62708-186-3
... frequent design changes. Some forming applications also involve coining and embossing. The article “Forming of Aluminum Alloys” in this Volume contains more information on the forming of aluminum alloy sheet. The drop hammer can be used to form deep pan-shaped and beaded-type parts. Kirksite...
Abstract
This article discusses the advantages and limitations of drop hammer forming and presents the key factors for determining a process plan. It describes the characteristics of hammers and presents information on tool materials. It explains the use of lubricants and preparation of blanks for forming. The article also details the drop hammer forming process of steels, aluminum alloys, magnesium alloys, and titanium alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.9781627082075
EISBN: 978-1-62708-207-5
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001235
EISBN: 978-1-62708-170-2
... is facilitated by using efficient work-handling fixtures, conveyors, and mechanisms. Figure 7 shows six types of work-handling mechanisms, which incorporate several basic motions for effective exposure of parts with a variety of shapes. Fig. 7 Motion and fixturing used in work-handling equipment...
Abstract
Shot peening is a method of cold working in which compressive stresses are induced in the exposed surface layers of metallic parts by the impingement of a stream of shot, directed at the metal surface at high velocity under controlled conditions. This article focuses on the major variables, applications, and limitations of shot peening and provides information on peening action, surface coverage, and peening intensity. It discusses the equipment used for shot recycling and shot propelling as well as the types and sizes of media used for peening. The article describes the problems in shot peening of production parts. It concludes with information on the SAE standard J442 that describes the test strips, strip holder, and gage used in measuring shot peening intensity.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001336
EISBN: 978-1-62708-173-3
... angle or truncation diameter increased. These results should be a valid indication of the effect of cathode tip shape for pulsed current welding, which produces a series of overlapping spot welds. A study of bead-on-plate welds ( Fig. 5 ) made with constant current and velocity indicated a similar...
Abstract
The gas-tungsten arc welding (GTAW) process is performed using a welding arc between a nonconsumable tungsten-base electrode and the workpieces to be joined. The arc discharge requires a flow of electrons from the cathode through the arc column to the anode. This article discusses two cases of electron discharge at the cathode: thermionic emission and nonthermionic emission, also called cold cathode, or field emission. It schematically illustrates relative heat transfer contributions to workpiece in the GTAW process. The article provides information on the effects of cathode tip shape and shielding gas composition in the GTAW process.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005162
EISBN: 978-1-62708-186-3
... into a die) is widely used and is often the most effective method when production quantities are large and workpieces are relatively small. In some applications, however, other forming methods may be desirable or needed. For example, the production of hollow shells from flat blanks requires deep drawing...
Abstract
This article reviews the selection and formability characteristics of steels, with an emphasis on low-carbon steels and some coverage on the forming of high-carbon steels. It describes the key factors that affect the formability of steels in terms of steelmaking practices, surface finishes, metal thicknesses, and alloying. The article explains the bending and forming operations with some examples. It also describes the formation of various shells, including doubly contoured shells, deep recessed shells, and deep circular shells.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005597
EISBN: 978-1-62708-174-0
... of the welding operation. The shielding gas interacts with the base material and with the filler material, if any, to produce the basic strength, toughness, and corrosion resistance of the weld. It can also affect the weld-bead shape and the penetration pattern. Understanding the basic properties...
Abstract
The shielding gas used in an arc welding process has a significant influence on the overall performance of the welding system. These gases are argon, helium, oxygen, hydrogen, nitrogen, and carbon dioxide. This article discusses the shielding gas selection criteria for plasma arc welding, gas metal arc welding, and flux cored arc welding. It describes the basic properties of shielding gases, namely, dissociation, recombination, reactivity potential, oxidation potential, and gas purity. The article also provides information on the influence of the shielding gas on weld mechanical properties and self-shielded flux cored arc welding.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001472
EISBN: 978-1-62708-173-3
... complete Lack of penetration (LOP): A condition in which joint penetration is less than that specified Craters: Depressions at the termination of a weld bead or in the molten weld pool Melt-through: A condition resulting when the arc melts through the bottom of a joint welded from one side...
Abstract
This article provides an overview of the types of weld discontinuities that are characteristic of specialized welding processes. These welding processes include electron-beam welding, plasma arc welding, electroslag welding, friction welding, resistance welding, and diffusion welding. The article also describes the common inspection methods used to detect these discontinuities.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001340
EISBN: 978-1-62708-173-3
... operation. The shielding gas interacts with the base material and with the filler material, if any, to produce the basic strength, toughness, and corrosion resistance of the weld. It can also affect the weld bead shape and the penetration pattern. Understanding the basic properties of a shielding...
Abstract
The shielding gas used in a welding process has a significant influence on the overall performance of the welding system. This article discusses the basic properties of a shielding gas in terms of ionization potential, thermal conductivity, dissociation and recombination, reactivity/oxidation potential, surface tension, gas purity, and gas density. It describes the characteristics of the components of a shielding gas blend. The article discusses the selection of shielding gas for gas-metal arc welding (GMAW), gas-tungsten arc welding (GTAW), and plasma arc welding (PAW), as well as the influence of shielding gas on weld mechanical properties. It concludes with a discussion on flux-cored arc welding.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006508
EISBN: 978-1-62708-207-5
..., dimensional stability, and foam pattern density are key control areas, but foam permeability has emerged as a most significant variable. Even more important has been the effect of bead packing on casting quality. The Lost Foam Consortium of the University of Alabama-Birmingham, with funding support from...
Abstract
Lost foam casting is a sand casting process in which the mold consists of an evaporative polystyrene foam pattern embedded in sand. It is especially well suited for making complex parts with convoluted features such as engine blocks, transmission cases, and cylinder heads. This article describes the lost foam casting process and its primary advantages, including the elimination of flash and parting lines, the relative ease of prototyping with foam, and the ability to incorporate multiple metals, whether in sections or layers, through sequential pours. It illustrates an entire process cycle from mold filling to fusion, cooling, and part ejection. The article also provides information on casting quality, discussing dimensional tolerances, fold defects, and porosity.
1