Skip Nav Destination
Close Modal
By
Ed Herman, Daniel J. Schaeffler, Evan J. Vineberg
By
Huimin Liu
Search Results for
bead forming
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 511
Search Results for bead forming
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Filler-metal weld bead formed on cold-sprayed iron structure, showing a rec...
Available to PurchasePublished: 01 August 2013
Fig. 12 Filler-metal weld bead formed on cold-sprayed iron structure, showing a recrystallized layer and grain growth below the bead. Source: Ref 19
More
Image
Beads and ribs. (a) Cross section of a bead or rib formed in sheet metal fo...
Available to PurchasePublished: 01 January 2006
Fig. 14 Beads and ribs. (a) Cross section of a bead or rib formed in sheet metal for strengthening. (b) Concentric ribs formed around a hole to strengthen and stiffen the part. R , radius; T , stock thickness. Source: Ref 1
More
Image
Bead tempering. The last bead is placed so its HAZ is formed in the weld me...
Available to PurchasePublished: 01 January 1993
Fig. 5 Bead tempering. The last bead is placed so its HAZ is formed in the weld metal rather than in the more hardenable base metal. Source: Ref 1
More
Image
Typical tooling setup for hydraulic forming of multiple beads in flat stock...
Available to PurchasePublished: 01 January 2006
Image
Published: 01 January 2006
Image
Beaded truck-cab roof that was stretch draw formed with mating dies. Dimens...
Available to PurchasePublished: 01 January 2006
Fig. 8 Beaded truck-cab roof that was stretch draw formed with mating dies. Dimensions given in inches
More
Image
Bulge-formed beads on a coupling tube using a rubber punch in a segmented d...
Available to PurchasePublished: 01 January 2006
Image
Bead of liquid penetrant formed when, after excess penetrant has been remov...
Available to PurchasePublished: 01 August 2018
Fig. 5 Bead of liquid penetrant formed when, after excess penetrant has been removed from a workpiece surface, the penetrant remaining in a discontinuity emerges to the surface until an equilibrium is established
More
Book Chapter
Press Brakes
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005113
EISBN: 978-1-62708-186-3
... operations: bending, flanging, drawing, cutoff, parting, blanking, hemming, curling, staking, notching, coining, piercing, ribbing, lancing, corrugating, beading, seaming, pipe forming, channel forming, embossing, bulging, trimming, perforating, slotting, shearing offsets, seminotching, slitting, louvering...
Abstract
Press brakes are a common and versatile type of equipment for bending metal by delivering an accurate vertical force in a confined longitudinal area. This article begins with a discussion on the design, widening methods, and types of materials used in press brakes. It focuses on the two basic drive systems used in operating press brakes, namely, mechanical and hydraulic drive systems. The article also provides an outline on the tooling associated with press-brakes.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005101
EISBN: 978-1-62708-186-3
... and their general geometric features. These operations include hole making, flanging, bead and rib forming, and stretching and drawing for shallow or deep recesses. The article illustrates the general approach to design for sheet forming and the considerations that must be made for material savings...
Abstract
Sheet-forming processes provide considerable geometric and material flexibility in meeting these requirements, and design of parts for sheet forming must take into account these benefits as well as the limitations of the processes. This article reviews the basic forming operations and their general geometric features. These operations include hole making, flanging, bead and rib forming, and stretching and drawing for shallow or deep recesses. The article illustrates the general approach to design for sheet forming and the considerations that must be made for material savings and manufacturing ease, in addition to part function. It concludes with information on reducing the amount of scrap in sheet-forming operations.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... Wrinkles form when metal flow into an area is greater than metal flow out Instead of increasing binder pressure, using draw beads or changing the blank edge contour and die entry radius are better approaches to minimizing wrinkles. Each of these approaches is feasible in simulation and therefore can...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Book Chapter
CAD/CAM and Die Face Design in Sheet Metal Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005150
EISBN: 978-1-62708-186-3
... face files is called functionalizing the die face. Once functionalized in the CAD system, the die construction and tryout costs are significantly reduced. This article includes the following sections: Grade designations Materials specifications Forming limit curve Friction (draw bead...
Abstract
This article describes grade designations of the various sheet steels used for draw forming. It discusses the specifications associated with most sheet draw forming materials. The article examines the behavior of stress- and strain-based forming limit curve (FLC). It provides a discussion on three separate frictional conditions acting in a draw die. The frictional conditions include the metal passing through a draw bead, the metal clamped in the binder, and the metal sliding across a die radius. The article also explains the basic steps in the vehicle development process. The steps involved in the thought process of direct engineering for formability are also explained. The article places considerable emphasis on the need for the designer to clearly define the die/tooling faces in the computer-aided design (CAD)/computer-aided manufacturing (CAM) system before the data are passed on to the construction functions.
Book Chapter
Prediction and Direct Measurements of Die Wear in Stamping Processes
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009000
EISBN: 978-1-62708-186-3
...-strength steels (AHSS) have attracted increasing attention for emerging applications in vehicle body structures. In stamping operations of sheet metals for automotive BIW parts, wear of draw dies and draw beads occurs as a result of high, localized contact pressure and friction between the sheet metals...
Abstract
This article describes the laboratory techniques for direct measurement and quantification of die wear in verifying a proprietary die-wear predictor methodology. This method is based on a theoretical formula that can be used to predict the rate of die wear and the life of a die surface coating, applicable to both mild steel and high-strength steels stampings. The article discusses the behavior of the surface conditions through quantitative measurements and surface analyses conducted throughout the wear tests. The surface conditions include surface roughness, surface morphology, microstructure, interfacial friction, surface temperatures, and wear rate.
Book Chapter
Press-Brake Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005177
EISBN: 978-1-62708-186-3
..., gooseneck punches, wiping dies, channel dies, arbor-type punches, box-forming dies, curling dies, beading dies, and cam-driven dies, with illustrations. It discusses the tool material selection for various operations. The article explains the procedures used for producing different shapes, including simple...
Abstract
This article discusses the principles of the press-brake forming process and its applicability with an example. It describes the types of press brakes and examines some considerations, which help in the selection of machine. The article provides information on flattening dies, gooseneck punches, wiping dies, channel dies, arbor-type punches, box-forming dies, curling dies, beading dies, and cam-driven dies, with illustrations. It discusses the tool material selection for various operations. The article explains the procedures used for producing different shapes, including simple boxlike parts, panels, flanged parts, architectural columns, fully closed parts, and semicircular parts. It examines the effect of work metal variables on results in press-brake operations. The article also reviews stock tolerances, design, and condition of machines and tools, which help in obtaining good dimensional accuracy.
Book Chapter
Drop Hammer Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005128
EISBN: 978-1-62708-186-3
... by the progressive deformation of sheet metal in matched dies under the repetitive blows of a gravity-drop hammer or a power-drop hammer. The configurations most commonly formed by the process include shallow, smoothly contoured double-curvature parts; shallow-beaded parts; and parts with irregular and comparatively...
Abstract
This article discusses the advantages and limitations of drop hammer forming and presents the key factors for determining a process plan. It describes the characteristics of hammers and presents information on tool materials. It explains the use of lubricants and preparation of blanks for forming. The article also details the drop hammer forming process of steels, aluminum alloys, magnesium alloys, and titanium alloys.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001268
EISBN: 978-1-62708-170-2
... fasteners or about 680 kg (1500 lb) of 8d common nails. After the parts are loaded in the barrel, approximately 1000 kg (2200 lb) of glass beads are added with sufficient water to form a slurry. The tumbling of part on part and glass bead on part creates kinetic energy that serves to cold weld...
Abstract
Mechanical plating is a method for coating ferrous metals, copper alloys, lead, stainless steel, and certain types of castings by tumbling the parts in a mixture of glass beads, metallic dust or powder, promoter or accelerator chemicals, and water. It offers a straightforward alternative method for achieving desired mechanical and galvanic properties with an extremely low risk of hydrogen embrittlement. This article provides a detailed description of the equipment, process steps, process capabilities, applicable parts, specific characteristics, advantages, limitations, post treatments, and waste treatment of mechanical plating.
Book Chapter
Sheet Metal Forming Simulation
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005540
EISBN: 978-1-62708-197-9
... and accuracy, or between locking and hourglassing, as mentioned subsequently. For forming and springback analysis, the procedure consists of applying boundary conditions (i.e., the motion of a punch or die, the action of draw beads, frictional constraints, and so on), stopping at the end of the forming...
Abstract
Simulation programs are becoming more effective tools in reducing the need for physical testing and the avoidance of costly downstream problems by solving the problems upfront in the early development stage. This article provides a brief review of the history and applied analysis of simple forming operations. It focuses on metal stamping simulation based on the finite-element methods or model (FEM) with emphasis on software tools using the three-dimensional FEM technology. The article discusses two aspects of particular importance in finite-element analysis of sheet forming and springback analysis: the type of solution algorithm/governing equation and the type of element. The article provides information on various models for material yield criteria.
Image
Use of three-roll forming in conjunction with press forming and hydraulic e...
Available to PurchasePublished: 01 January 2006
kPa (45 psi). Restore roundness of cylinder by rerolling several times in three-roll former. Form bead on one end of cylinder, in four passes in an edger. Roll flange on opposite end of cylinder, in two passes. Trim flange. Vapor degrease. Weld (Heliarc) disk to inside of flange
More
Image
Various sealing methods that have been used around the sheet to provide a p...
Available to PurchasePublished: 01 January 2006
Fig. 10 Various sealing methods that have been used around the sheet to provide a pressure seal suitable for containing the gas pressure during forming. Sections (a) and (b) use seal beads machined into the tooling, and (c) shows the use of a superplastic frame used as a soft gasket.
More
Image
Various sealing methods that have been used around the sheet to provide a p...
Available to PurchasePublished: 01 December 1998
Fig. 50 Various sealing methods that have been used around the sheet to provide a pressure seal suitable for containing the gas pressure during forming. Sections (a) and (b) utilize seal beads machined into the tooling, and (c) shows the use of a superplastic frame used as a soft gasket.
More
1