Skip Nav Destination
Close Modal
Search Results for
batch cold melting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 294 Search Results for
batch cold melting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006333
EISBN: 978-1-62708-179-5
... Abstract Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. This article discusses melting practices such as batch cold melting and duplexing, and their control mechanisms...
Abstract
Malleable iron, like ductile iron, possesses considerable ductility and toughness because of its combination of nodular graphite and low-carbon metallic matrix. This article discusses melting practices such as batch cold melting and duplexing, and their control mechanisms. It schematically illustrates the microstructure of annealed ferritic malleable iron, which is characterized by microstructures consisting of uniformly dispersed fine particles of free carbon in a matrix of ferrite or tempered martensite. The article describes the digital solidification analysis technology, simulation technologies, and smart engineering for the production of malleable iron. It provides information on the applications of ferritic and pearlitic malleable irons.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005911
EISBN: 978-1-62708-167-2
... heating. This article's purpose is to show that induction heating has been and is being used in the glass melting industry; the article does not imply any perspective other than what is written in the patents referenced. At the turn of the 20th century it was discovered that a glass batch (i.e...
Abstract
The historical use of induction heating relating to glass melting gives some insight into its use in today's glass manufacturing industry. A patent search on induction heating provides historical information about how induction heating was used in the glass melting industry, from both a direct fired or a susceptor/container approach. This article provides review of historical patents, following an introduction to conductivity in glass and electrical heating. The purpose is to show that induction heating has been and is being used in the glass melting industry.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005920
EISBN: 978-1-62708-167-2
... distribution, or other attributes. Within experimental melting departments there are a number of different “sands” or silica sources stocked and used. Once the raw materials are selected and the batch formulation determined, the materials are weighed and mixed together. Mixing is important because lab...
Abstract
Induction heating for glass melting is an alternative to resistance heating element furnaces. This article provides information on the basics of glass fabrication process. It focuses on crucible melt furnace for small-scale glass melting and the induction melting process. It also describes induction glass forming (forming from the melt) and glass forming by induction heating (post-melt). The article compares the benefits of using induction heating and refractory-lined resistance heating.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005196
EISBN: 978-1-62708-187-0
... with starting blocks, which are required of 60 Hz (line frequency) furnaces. In terms of electrical consumption, the batch-melting method provides a 7% higher efficiency in iron-melting furnaces and a 4% higher efficiency in nonferrous-melting units over the tap-and-charge method. This is because the cold...
Abstract
This article describes the principles and classifications of induction furnaces. The classifications of induction furnaces are coreless and channel. The electromagnetic stirring action in these furnaces is reviewed. The article provides information on the various power supplies and water cooling systems for induction furnaces. Furnace operators can increase the power supply utilization by the use of mechanical skimmers. The article describes the various lining materials used in induction furnaces, namely, silica, alumina, and magnesia. The crucible wall scrapers, ramming mixes, and lining push-out device used in induction furnaces are also reviewed. The article concludes with a discussion on batch operation and tap-and-charge operation, two distinct ways of operating a coreless induction furnace.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003065
EISBN: 978-1-62708-200-6
... melting temperatures are necessary in order to transfer the required massive inputs of energy to the melting batch. The charging of the batch to the furnace is a key factor in this energy transfer process, because the cold batch is involved in establishing the convection currents within the melt...
Abstract
The large majority of the commercially important glasses are processed from a carefully calculated batch of raw materials that is then melted in special furnaces. Providing an introduction to melting practices of glass production, this article focuses on various finishing methods of glass products, including forming, grinding and polishing, and explores the advantages, disadvantages and steps involved in sol-gel process. It also discusses the types, processes and properties of annealed, laminated, and tempered glass, and presents the steps involved in glass decoration. The article gives a detailed account of production, properties and application of fiberglass, optical fibers, glass spheres and ceramic glasses, and describes the forms, classification, compositions and properties of glass/metal and glass-ceramic/metal seals.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007021
EISBN: 978-1-62708-439-0
.... A production heat of powder is defined as a single run from an atomization melt. For batch processing, a heat represents one furnace load of material, whereas for other semicontinuous processes, it could mean several electrodes, wire spools, or other forms of raw material batches processed during...
Abstract
This article provides an overview of the supply chain for metallic additively manufactured materials, with an emphasis on spherical alloy powders. The article describes powder production processes as well as the various metal alloys that can be produced using powder AM techniques. It also reviews the basic characteristics of powder feedstocks and the management of metallic powders.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005205
EISBN: 978-1-62708-187-0
... is not possible; increased power results in increased melting rate instead of superheating. Expensive electrodes must be used instead of the high-quality unconsolidated revert material that can be used for plasma cold crucible casting. For small batches of superalloys (up to 8 kg, or 18 lb), electron...
Abstract
Plasma melting is a material-processing technique in which the heat of thermal plasma is used to melt a material. This article discusses two typical design principles of plasma torches in the transferred mode: the tungsten tip design and the hollow copper electrode design. It describes the sources of atmospheric contamination in plasma melting furnaces and their control measures. The equipment used in plasma melting furnaces are also discussed. The article provides a detailed discussion on various plasma melting processes, such as plasma consolidation, plasma arc remelting, plasma cold hearth melting, and plasma casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005204
EISBN: 978-1-62708-187-0
... Abstract Electron beam melting includes melting, refining, and conversion processes for metals and alloys. This article describes the electron beam melting process, as well as the principles, equipment, and process considerations of drip melting and cold hearth melting process. electron...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001386
EISBN: 978-1-62708-173-3
... and reviews three types of furnaces: continuous, semi-continuous, and batch. It presents three examples of the industrial applications of the furnace brazing: vacuum devices, jet engines, and automotive industries. The health and safety guidelines to be followed during the furnace brazing are also discussed...
Abstract
Furnace brazing is a mass production process for joining the components of small assemblies with a metallurgical bond, using a nonferrous filler metal as the bonding material and a furnace as the heat source. This article presents the advantages and limitations of the furnace brazing and reviews three types of furnaces: continuous, semi-continuous, and batch. It presents three examples of the industrial applications of the furnace brazing: vacuum devices, jet engines, and automotive industries. The health and safety guidelines to be followed during the furnace brazing are also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005267
EISBN: 978-1-62708-187-0
... Abstract This article describes the melting process of casting metals used in hot chamber die casting. It discusses the design and capabilities of injection components, such as gooseneck, plunger, and cylinder. The article reviews the distinctions between hot and cold chamber processes...
Abstract
This article describes the melting process of casting metals used in hot chamber die casting. It discusses the design and capabilities of injection components, such as gooseneck, plunger, and cylinder. The article reviews the distinctions between hot and cold chamber processes. An example of a typical runner, gate and overflow configuration for faucet fixture casting is shown. Temperature control for die casting is also discussed. The article explains some ejection and post-processing techniques used for the hot chamber die casting: robotics, recycling, and fluxing.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003370
EISBN: 978-1-62708-195-5
... of sheet molding compounds (SMC). The three types of resin paste mixing techniques, such as batch, batch/continuous, and continuous, for an SMC operation are reviewed. The article discusses the design features and functional operations of the two types of SMC machines, namely, continuous-belt and beltless...
Abstract
Molding compounds are plastic materials in varying stages of pellets or granulation that consist of resin, filler, pigments, reinforcement, plasticizers, and other ingredients ready for use in a molding operation. This article describes the material components and physical properties of sheet molding compounds (SMC). The three types of resin paste mixing techniques, such as batch, batch/continuous, and continuous, for an SMC operation are reviewed. The article discusses the design features and functional operations of the two types of SMC machines, namely, continuous-belt and beltless machines. It explains the formulation and processing of bulk molding compounds and reviews molding methods for bulk molding compounds, including compression, transfer, and injection molding. The effects of the fiber type and length and the matrix type on thermoset bulk molding compounds are discussed. It describes the four injection molding processes of injection molding compounds such as feeding, transporting, injecting, and flowing.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting...
Abstract
In the metal producing and processing industries, induction melting and holding has found wide acceptance. This article provides a detailed account of the physical principles of induction melting processes. It discusses the fundamental principles and components of induction furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction melting installations.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006337
EISBN: 978-1-62708-179-5
... requirements generally charge, melt down, refine, and superheat the iron in batches. This practice is commonly referred to as cold melting. Such installations use electric induction, electric arc, or air (reverberatory) furnaces for melting a properly proportioned charge of white iron returns, scrap iron...
Abstract
Various types of furnaces have been used for cast iron melting. In terms of tonnage, the primary melting methods used by iron casting facilities are cupola and induction furnaces. This article describes the operation and control principles of cupola furnace. It discusses the advantages of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot principle of pressure-actuated pouring furnaces and provides information on the effect of pouring magnesium-treated melts.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006692
EISBN: 978-1-62708-210-5
..., and a low coefficient of thermal expansion. The alloys containing appreciable amounts of silicon become a dark-gray to charcoal color when anodic oxide finishes are applied; therefore, they are in demand for architectural applications. Strengthening of 4 xxx is mainly done by cold working, but age...
Abstract
Wrought 4xxx alloys (extrusions and forgings) exhibit high surface hardness, wear resistance, and a low coefficient of thermal expansion. This article provides a summary of brazing filler metals used to join brazeable aluminum-base metals. It contains tables that list the nominal composition and filler-metal alloys of 4xxx series used in structural forms.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005294
EISBN: 978-1-62708-187-0
... available, the batch furnace increased in numbers. Over time, methods were developed to increase the frequency of the power supplies, allowing for increased power densities and smaller furnace sizes. Small furnaces with very high power densities of 700 to 1000 kW/ton can now melt a cold charge in 30 to 35...
Abstract
This article reviews the production stages of iron foundry casting, with particular emphasis on the melting practices, molten metal treatment, and feeding of molten metal into sand molds. It discusses the molten metal treatments for high-silicon gray, high-nickel ductile, and malleable irons. Foundry practices are also described for compacted graphite, high-silicon ductile, and high-alloy white irons.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001007
EISBN: 978-1-62708-161-0
... Abstract This article describes ironmaking and steelmaking practices (melt or liquid processing, including hot metal desulfurization) and discusses the evolution of these processes and their effects on steel properties. The physical chemistry of steelmaking may appear deceptively simple...
Abstract
This article describes ironmaking and steelmaking practices (melt or liquid processing, including hot metal desulfurization) and discusses the evolution of these processes and their effects on steel properties. The physical chemistry of steelmaking may appear deceptively simple for integrated steel mill operations where ore from the ground is converted into steel. The various refining steps that occur in steelmaking are reviewed. The article also describes solid processing of steel, with emphasis on hot and cold rolling, thermomechanical processing, and annealing of flat steel products.
Series: ASM Handbook
Volume: 4F
Publisher: ASM International
Published: 01 February 2024
DOI: 10.31399/asm.hb.v4F.a0007013
EISBN: 978-1-62708-450-5
... chambers (called cold chambers), HPGQ has also become established for the hardening of low-alloyed case-hardening steels and for quenched and tempered steels. To date, the primary applications of HPGQ in cold chambers are gear components (wheels, shafts, synchronizers), bearing rings, and components...
Abstract
Gas quenching is one of the standard quenching technologies used in fabricating metallic components. The gas quenching process is usually performed at elevated pressures and is therefore mostly referred to as high-pressure gas quenching (HPGQ). This article presents the physical principles of HPGQ and also presents the equipment for gas quenching. The article describes the three types of gas that are mainly used for HPGQ: nitrogen, helium, and argon. It provides the mathematical model for heat fluxes and temperatures during HPGQ. The article also presents typical industrial applications for HPGQ in addition to equipment process and safety.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003841
EISBN: 978-1-62708-183-2
... Grain size and grain size distribution Monolithic or shaped refractory Nature and extent of bonding Phase equilibrium melting points and liquid percentages of the refractory Phase equilibrium melting points and liquid percentages formed between the refractory and process material Phase...
Abstract
This article provides an overview of the corrosion theory relating to refractories on the basis of acid/base reactions, thermodynamics, and kinetic considerations. The tests to evaluate refractory corrosive wear are reviewed. The article describes the specific refractories used in steel, glass, aluminum, and chemical-resistant applications. Specific material issues that should be considered or evaluated when choosing or using refractory materials are discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003217
EISBN: 978-1-62708-199-3
... to carbon steels. Metals such as chromium and titanium cannot be applied to steel by hot dipping because of their high melting points. Tin, which prior to 1937 was applied only by hot dipping, is now almost always electrodeposited. This is because it is very difficult to produce the thin and uniform...
Abstract
There are various coating techniques in practice to prevent the deterioration of steels. This article focuses on dip, barrier, and chemical conversion coatings and describes hot-dip processes for coating carbon steels with zinc, aluminum, lead-tin, and other alloys. It describes continuous electrodeposition for steel strip and babbitting and discusses phosphate and chromate conversion coatings as well. It also addresses painting, discussing types and selection, surface preparation, and application methods. In addition, the article describes rust-preventive compounds and their application. It also provides information on weld-overlay and thermal spray coating, porcelain enameling, and the preparation of enamel frits for steels. The article closes by describing methods and materials for ceramic coating.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005203
EISBN: 978-1-62708-187-0
... in titanium primary melting. Recently, much of the melting of titanium sponge has been converted to plasma cold hearth (PCH) melting. Also, some of the largest rectangular ingots produced for rolling into sheet are now made on large multimegawatt electron beam (EB) furnaces. The total tonnage of material...
1