Skip Nav Destination
Close Modal
By
ASM Committee on Material Requirements for Service Conditions, R. David Thomas, Jr., Bruno L. Alia, William R. Apblett, Robert G. Bartifay ...
Search Results for
base metal weldability
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 426 Search Results for
base metal weldability
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
... Abstract Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity...
Abstract
Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity, and susceptibility to solidification cracking and liquation cracking. It provides an overview on welding processes, including gas metal arc welding, gas tungsten arc welding, resistance spot and seam welding, laser beam welding, and various solid-state welding processes. A review on joint design is also included, mainly in the general factors associated with service weldability (fitness). The article also provides a discussion on the selection and weldability of non-heat-treatable aluminum alloys, heat treatable aluminum alloys, aluminum-lithium alloys, and aluminum metal-matrix composites.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001476
EISBN: 978-1-62708-173-3
... steels, cast irons, and stainless steels) and nonferrous (titanium) base metals. arc welding base metal weldability carbon steels cast irons oxyfuel welding repair welding stainless steels structural failures titanium weld defects weld repairs REPAIR AND MAINTENANCE of parts...
Abstract
Repair and maintenance of parts and components is carried out as a logical procedure that ensures the production of a usable and safe component or it can be approached haphazardly. This article describes the requirements and repair techniques of arc and oxyfuel welding processes to repair weld defects and structural failures. It further discusses the preliminary assessment and base-metal preparation involved in weld repair. Furthermore, the article provides information on the general repair guidelines that are followed to ensure successful weld repairs of both ferrous (carbon steels, cast irons, and stainless steels) and nonferrous (titanium) base metals.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001431
EISBN: 978-1-62708-173-3
... and characteristics as: Base-metal and weld-metal cracking Base-metal and weld-metal ductility Weld penetration Weld pool shape and fluid flow Because weldability testing is used to evaluate the welding characteristics of the base materials, many of these weldability tests are laboratory...
Abstract
This article focuses on the tests for evaluating the weldability, cracking susceptibility, weld pool shape, fluid flow, and weld penetration of base materials. These tests include different types of self-restraint tests, externally loaded tests for evaluating cracking susceptibility and weld penetration tests, weld pool shape tests, and Gleeble testing for evaluating weld pool shape, fluid flow, and weld penetration.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005644
EISBN: 978-1-62708-174-0
... weldability of specific metals and alloys by arc welding processes Base metals welded Welding processes Shielded metal arc Gas tungsten arc Plasma arc Submerged arc Gas metal arc Flux cored arc Aluminum C A A No A No Copper-base alloys Brasses No C C No C No Bronzes...
Abstract
Weldability refers to the ease of welding a material under the imposed fabrication conditions to perform satisfactorily during service. This article is a comprehensive collection of tables that summarize the general weldability of cast irons, steels, nonferrous metals, and their alloys by common fusion welding processes.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001420
EISBN: 978-1-62708-173-3
.... Weldability predictions made using this index do not account for the effect lithium has on copper or magnesium solubility, nor do they account for the use of filler alloys to modify weld metal composition. Nevertheless, this index has proven useful in aluminum-lithium base metal and filler alloy development...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
... alloys carbon steels copper alloys dissimilar metal combinations high-strength steels low-alloy steels stainless steel ultrasonic welding ULTRASONIC WELDING (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. Various metals differ in weldability based...
Abstract
Ultrasonic welding (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. This article describes procedure considerations for the ultrasonic welding of specific material types. It reviews difficult-to-weld alloys, such as carbon and low-alloy steels, high-strength steels, and stainless steel, and provides information on the applications of weldable alloys such as aluminum alloys and copper alloys. The article concludes with a discussion on welding of dissimilar metal (nonferrous-to-nonferrous) combinations and its applications.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001034
EISBN: 978-1-62708-161-0
... approximately 350 to 1000 MPa (50 to 150 ksi), depending on the composition. The base metal is kept at less than 0.22% C for good weldability. Preheating must be used with caution when welding QT steels because it reduces the cooling rate of the weld HAZ. If the cooling rate is too slow, the reaustenitized zone...
Abstract
This article aims to survey the factors controlling the weldability of carbon and low-alloy steels in arc welding. It discusses the influence of operational parameters, thermal cycles, and metallurgical factors on weld metal transformations and the susceptibility to hot and cold cracking. The article addresses the basic principles that affect the weldability of carbon and low-alloy steels. It outlines the characteristic features of welds and the metallurgical factors that affect weldability. It describes the common tests to determine steel weldability. There are various types of tests for determining the susceptibility of the weld joint to different types of cracking during fabrication, including restraint tests, externally loaded tests, underbead cracking tests, and lamellar tearing tests. Weldability tests are conducted to provide information on the service and performance of welds. The major tests that are discussed in this article are weld tension test, bend test, the drop-weight test, the Charpy V-notch test, the crack tip opening displacement test, and stress-corrosion cracking test.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001430
EISBN: 978-1-62708-173-3
... The metals and alloys based on zirconium and tantalum have weldability characteristics similar to those of titanium. They readily react with oxygen and form very stable oxides. Like titanium, they have high solubilities for oxygen, nitrogen, and hydrogen at elevated temperatures. Small amounts of dissolved...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... that are near those of the base metal can be achieved with as-welded Ti-10V-2Fe-3Al. Metastable-Beta Alloys Although metastable-beta titanium alloys, such as Beta 21S, are generally considered to be weldable, cooling rates should be kept relatively high, and the weld fusion zone size should be minimized...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001407
EISBN: 978-1-62708-173-3
... Abstract Stainless steels are an important class of engineering alloys used in both wrought and cast form for a wide range of applications and in many environments. This article aids in the selection of stainless steels based on weldability and service integrity. Stainless steels are classified...
Abstract
Stainless steels are an important class of engineering alloys used in both wrought and cast form for a wide range of applications and in many environments. This article aids in the selection of stainless steels based on weldability and service integrity. Stainless steels are classified by microstructure and are described as ferritic, martensitic, austenitic, or duplex. The article illustrates compositional ranges of the ferritic, martensitic, austenitic, and duplex alloys in the Schaeffler diagram. It describes the metallurgical aspects of welded stainless steels to be considered for particular engineering applications and service conditions. The article discusses the microstructural evolution of the weld metal and the heat-affected zone, susceptibility to defect formation during welding, mechanical and corrosion properties, and weld process tolerance.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005345
EISBN: 978-1-62708-187-0
... of the fusion zone, as the partially melted region is not always altered by dilution with the weld metal. Some of the higher grades of gray irons are often considered nonweldable. The lower-strength grades of ductile irons are very weldable, but the weldability decreases as the strength increases. Other types...
Abstract
Repair welding is a necessary operation for most fabricators and can cost more than the price of the original component if performed improperly. This article provides a discussion on the repair welding of castings for ferrous and nonferrous materials. The discussion focuses on the surface preparation, weld repair process selection, joint selection, filler metal selection, weld repair considerations, deposition techniques, postweld heat treatment, and verification of weld repair quality.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001426
EISBN: 978-1-62708-173-3
..., including tantalum, niobium, rhenium, molybdenum, and tungsten. Refractory metal alloys are discussed in the order of decreasing weldability: tantalum, niobium, rhenium, molybdenum, and tungsten. microstructure molybdenum niobium refractory metals rhenium tantalum tungsten weldability welding...
Abstract
This article discusses special metallurgical considerations during the fusion welding of refractory metal alloys. These considerations are: microstructure, interstitial impurities, and welding conditions that are considered during the fusion welding of refractory metal alloys, including tantalum, niobium, rhenium, molybdenum, and tungsten. Refractory metal alloys are discussed in the order of decreasing weldability: tantalum, niobium, rhenium, molybdenum, and tungsten.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001423
EISBN: 978-1-62708-173-3
...′ strengtheners in many superalloys. When the (Al + Ti) level exceeds some critical value, strain-age cracking becomes a significant problem. The base metal can be effectively protected against strain-age cracking by welding in the overaged condition. This prevents aging during reheating. Fig. 1 Plot...
Abstract
This article focuses on the physical metallurgy of nonferrous high-temperature materials that affects weldability on the precipitates used for age hardening (strain-age cracking). Those precipitates associated with solidification and solidification segregation, primarily Laves and carbides (heat-affected zone grain boundaries cracking), are also discussed. The article examines the parameters that affect heat-affected zone liquation cracking and presents a solution for each problem.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... base metal. Again, the acceptability of the service weldability depends on the intended application. The service weldability of a particular steel may be acceptable for an application where corrosion is of prime importance and toughness is secondary. However, the same steel may be unacceptable...
Abstract
This article presents in-depth metallurgical information about the response of carbon and low-alloy steels to welding conditions and micro-structural evolution in the weld heat-affected zone. It discusses the fabrication weldability and service weldability of carbon and low-alloy steels. The article describes six general classes of the metal: low-carbon steels, high-strength low-alloy steels, quenched-and-tempered steels, heat-treatable low-alloy steels, thermal-mechanical-controlled processing steels, and chromium-molybdenum steels. It concludes with an illustration of steels' susceptibility to hydrogen-assisted cold cracking relative to carbon content and carbon equivalent.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... between nearly unaffected base metals. In this regard, the weldability of the dispersion-strengthened aluminum alloys is influenced by the effects of welding process conditions and parameters on the high-temperature deformation characteristics, and subsequent microstructural development in the weld zone...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001418
EISBN: 978-1-62708-173-3
... for selected filler alloys are included in Table 1 . Selecting the best filler alloy for a given application depends on the desired performance relative to weldability, strength, ductility, and corrosion resistance. In general, the filler alloy selected should be similar in composition to the base metal alloy...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001342
EISBN: 978-1-62708-173-3
... 9 and 10 summarize parameters that affect hot cracking in the weld metal and in the base metal HAZ, respectively. For most alloys that are highly susceptible to solidification cracking, filler metals of different composition have been developed to minimize the cracking that accompanies fusion...
Abstract
This article discusses four types of defects in materials that have been fusion welded and that have been the focus of much attention because of the magnitude of their impact on product quality. These include hot cracks, heat-affected zone (HAZ) microfissures, cold cracks, and lamellar tearing. These defects, all of which manifest themselves as cracks, are characteristic of phenomena that occur at certain temperature intervals specific to a given alloy. The article presents selected alloy 625 compositions used in weldability study.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001406
EISBN: 978-1-62708-173-3
..., problems with the HAZ sometimes can only be resolved by changing the base metal, which is often an excessively costly measure, or by changing the heat input. Various empirical carbon equivalents have been developed and utilized to evaluate the weldability (hydrogen-induced cold-cracking tendency...
Abstract
This article describes the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ) of carbon and low-alloy steels. It provides information on steel types and their weldability. The article also explains the influence of welding procedure factors on the weldment properties. These procedure factors include preheat temperature, interpass temperature, postweld heat treatment, and heat input.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001403
EISBN: 978-1-62708-173-3
... characteristics and can modify the chemical composition, inclusion content, and microstructure of the final weld metal. Weldability Steels for pressure vessel fabrications are often classified as weldable based on composition, thickness, and need for preheat (see the article “Weldability Testing...
Abstract
The selection of materials for welded construction applications involves a number of considerations, including design codes and specifications. Mobile structures have quite different materials requirements for weight, durability, and safety than stationary structures, which are built to last for many years. This article provides an overview of the service conditions. It offers guidance for material selection applications, including bridges and buildings, pressure vessels and piping, shipbuilding and offshore structures, aerospace systems, machinery and equipment, automobiles, railroad systems, and sheet metal. Material properties and welding processes that may be significant in meeting design goals are also described.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001425
EISBN: 978-1-62708-173-3
.... (d) At 20 °C (70 °F) Figure 3 shows the dramatic advantage in strength of mechanically alloyed products over the conventional dispersion-strengthened and cast nickel-base alloys. Unfortunately, making these materials weldable is difficult. While they can undergo diffusion bonding or brazing...
Abstract
The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires special knowledge and treatments developed specifically for each material. This article emphasizes the special metallurgical welding considerations for welding solid-solution and precipitation hardening nickel alloys, cobalt alloys, and superalloys.
1