1-20 of 426 Search Results for

base metal weldability

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006510
EISBN: 978-1-62708-207-5
... Abstract Weldability is a function of three major factors: base material quality, welding process, and design. This article focuses on base-metal weldability of aluminum alloys in terms of mechanical property degradation in both the weld region and heat-affected zone, weld porosity...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001476
EISBN: 978-1-62708-173-3
... steels, cast irons, and stainless steels) and nonferrous (titanium) base metals. arc welding base metal weldability carbon steels cast irons oxyfuel welding repair welding stainless steels structural failures titanium weld defects weld repairs REPAIR AND MAINTENANCE of parts...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001431
EISBN: 978-1-62708-173-3
... and characteristics as: Base-metal and weld-metal cracking Base-metal and weld-metal ductility Weld penetration Weld pool shape and fluid flow Because weldability testing is used to evaluate the welding characteristics of the base materials, many of these weldability tests are laboratory...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005644
EISBN: 978-1-62708-174-0
... weldability of specific metals and alloys by arc welding processes Base metals welded Welding processes Shielded metal arc Gas tungsten arc Plasma arc Submerged arc Gas metal arc Flux cored arc Aluminum C A A No A No Copper-base alloys   Brasses No C C No C No   Bronzes...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001420
EISBN: 978-1-62708-173-3
.... Weldability predictions made using this index do not account for the effect lithium has on copper or magnesium solubility, nor do they account for the use of filler alloys to modify weld metal composition. Nevertheless, this index has proven useful in aluminum-lithium base metal and filler alloy development...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
... alloys carbon steels copper alloys dissimilar metal combinations high-strength steels low-alloy steels stainless steel ultrasonic welding ULTRASONIC WELDING (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. Various metals differ in weldability based...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001034
EISBN: 978-1-62708-161-0
... approximately 350 to 1000 MPa (50 to 150 ksi), depending on the composition. The base metal is kept at less than 0.22% C for good weldability. Preheating must be used with caution when welding QT steels because it reduces the cooling rate of the weld HAZ. If the cooling rate is too slow, the reaustenitized zone...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001430
EISBN: 978-1-62708-173-3
... The metals and alloys based on zirconium and tantalum have weldability characteristics similar to those of titanium. They readily react with oxygen and form very stable oxides. Like titanium, they have high solubilities for oxygen, nitrogen, and hydrogen at elevated temperatures. Small amounts of dissolved...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001416
EISBN: 978-1-62708-173-3
... that are near those of the base metal can be achieved with as-welded Ti-10V-2Fe-3Al. Metastable-Beta Alloys Although metastable-beta titanium alloys, such as Beta 21S, are generally considered to be weldable, cooling rates should be kept relatively high, and the weld fusion zone size should be minimized...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001407
EISBN: 978-1-62708-173-3
... Abstract Stainless steels are an important class of engineering alloys used in both wrought and cast form for a wide range of applications and in many environments. This article aids in the selection of stainless steels based on weldability and service integrity. Stainless steels are classified...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005345
EISBN: 978-1-62708-187-0
... of the fusion zone, as the partially melted region is not always altered by dilution with the weld metal. Some of the higher grades of gray irons are often considered nonweldable. The lower-strength grades of ductile irons are very weldable, but the weldability decreases as the strength increases. Other types...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001426
EISBN: 978-1-62708-173-3
..., including tantalum, niobium, rhenium, molybdenum, and tungsten. Refractory metal alloys are discussed in the order of decreasing weldability: tantalum, niobium, rhenium, molybdenum, and tungsten. microstructure molybdenum niobium refractory metals rhenium tantalum tungsten weldability welding...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001423
EISBN: 978-1-62708-173-3
...′ strengtheners in many superalloys. When the (Al + Ti) level exceeds some critical value, strain-age cracking becomes a significant problem. The base metal can be effectively protected against strain-age cracking by welding in the overaged condition. This prevents aging during reheating. Fig. 1 Plot...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... base metal. Again, the acceptability of the service weldability depends on the intended application. The service weldability of a particular steel may be acceptable for an application where corrosion is of prime importance and toughness is secondary. However, the same steel may be unacceptable...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... between nearly unaffected base metals. In this regard, the weldability of the dispersion-strengthened aluminum alloys is influenced by the effects of welding process conditions and parameters on the high-temperature deformation characteristics, and subsequent microstructural development in the weld zone...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001418
EISBN: 978-1-62708-173-3
... for selected filler alloys are included in Table 1 . Selecting the best filler alloy for a given application depends on the desired performance relative to weldability, strength, ductility, and corrosion resistance. In general, the filler alloy selected should be similar in composition to the base metal alloy...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001342
EISBN: 978-1-62708-173-3
... 9 and 10 summarize parameters that affect hot cracking in the weld metal and in the base metal HAZ, respectively. For most alloys that are highly susceptible to solidification cracking, filler metals of different composition have been developed to minimize the cracking that accompanies fusion...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001406
EISBN: 978-1-62708-173-3
..., problems with the HAZ sometimes can only be resolved by changing the base metal, which is often an excessively costly measure, or by changing the heat input. Various empirical carbon equivalents have been developed and utilized to evaluate the weldability (hydrogen-induced cold-cracking tendency...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001403
EISBN: 978-1-62708-173-3
... characteristics and can modify the chemical composition, inclusion content, and microstructure of the final weld metal. Weldability Steels for pressure vessel fabrications are often classified as weldable based on composition, thickness, and need for preheat (see the article “Weldability Testing...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001425
EISBN: 978-1-62708-173-3
.... (d) At 20 °C (70 °F) Figure 3 shows the dramatic advantage in strength of mechanically alloyed products over the conventional dispersion-strengthened and cast nickel-base alloys. Unfortunately, making these materials weldable is difficult. While they can undergo diffusion bonding or brazing...