Skip Nav Destination
Close Modal
Search Results for
base metal migration
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 457 Search Results for
base metal migration
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004172
EISBN: 978-1-62708-184-9
.... It discusses the chip corrosion and oxidation of tin and tin-lead alloys (solders) in SIC. The article also addresses the corrosion of the device terminations resulting in lead (termination) tarnishing that are caused by various factors, including galvanic corrosion, chemical residues, base metal migration...
Abstract
In a typical semiconductor integrated circuits (SICs) component, corrosion may be observed at the chip level and at the termination area of the lead frames that are plated with a solderable metal or alloy, such as tin and tin-lead alloys that are susceptible to corrosion. This article focuses on the key factors contributing to corrosion of electronic components, namely, chemicals (salts containing halides, sulfides, acids, and alkalis), temperature, air (polluted air), moisture, contact between dissimilar metals in a wet condition, applied potential differences, and stress. It discusses the chip corrosion and oxidation of tin and tin-lead alloys (solders) in SIC. The article also addresses the corrosion of the device terminations resulting in lead (termination) tarnishing that are caused by various factors, including galvanic corrosion, chemical residues, base metal migration and plating additives.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004173
EISBN: 978-1-62708-184-9
... Abstract This article focuses on the various types of corrosion-related failure mechanisms and their effects on passive electrical components. The types include halide-induced corrosion, organic-acid-induced corrosion, electrochemical metal migration, silver tarnish, fretting, and metal...
Abstract
This article focuses on the various types of corrosion-related failure mechanisms and their effects on passive electrical components. The types include halide-induced corrosion, organic-acid-induced corrosion, electrochemical metal migration, silver tarnish, fretting, and metal whiskers. The passive electrical components include resistors, capacitors, wound components, sensors, transducers, relays, switches, connectors, printed circuit boards, and hardware.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004175
EISBN: 978-1-62708-184-9
... phenomena that are found only in electronics, namely, electrochemical migration (ECM) and conductive anodic filament formation (CAF). It describes the corrosion that takes place in metals such as copper, tin, and tin-lead alloys, which are commonly used in electronic packaging. The article also discusses...
Abstract
This article provides information on various forms of corrosion that occur in electronic packaging. Portable consumer electronic hardware which is subjected to humidity exposures is prone to condensed moisture and liquid damage. The article discusses two other corrosion-related phenomena that are found only in electronics, namely, electrochemical migration (ECM) and conductive anodic filament formation (CAF). It describes the corrosion that takes place in metals such as copper, tin, and tin-lead alloys, which are commonly used in electronic packaging. The article also discusses the corrosion of the components used in electronic assemblies.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005432
EISBN: 978-1-62708-196-2
... depend on a specific texture component (e.g., measurements made on texture “classes,” ( Ref 29 ) or based on high-mobility 40° <111> boundaries in face-centered cubic metals, ( Ref 10 ) and the stored energy of the region into which the newly recrystallized grain is growing. A key advantage of CA...
Abstract
This article examines how cellular automaton (CA) can be applied to the simulation of static and dynamic recrystallization. It describes the steps involved in the CA simulation of recrystallization. These include defining the CA framework, generating the initial microstructure, distributing nuclei of recrystallized grains, growing the recrystallized grains, and updating the dislocation density. The article concludes with information on the developments in CA simulations.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003490
EISBN: 978-1-62708-195-5
... to be developed, and new and significant applications can be envisioned for the future, based not only on new markets, but also on the continual understanding of new materials and processes and associated capabilities. Metal-Matrix Composites Advanced composites based on metallic matrices have a somewhat...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005507
EISBN: 978-1-62708-197-9
... be exercised due to the use of high vacuum for operating the microscope, because this can aggravate the grooving problem. Also, photoemission microscopy can be used for continuous tracking of grain-boundary migration ( Ref 70 ). However, this technique is restricted to metals with high melting points...
Abstract
Grain boundaries are interfaces between crystallites of the same phase but different crystallographic orientation. They can be characterized as being low angle or high angle. This article discusses the measurements of grain-boundary energy with a brief summary of different schemes for measuring grain-boundary surface tension. The atomistic simulations of grain-boundary energy, measurement of grain-boundary migration and the techniques used to monitor grain-boundary migration are reviewed. Several considerations and effects influencing the computation of grain-boundary mobility are also discussed.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006395
EISBN: 978-1-62708-192-4
...”). Electroplating Fundamentals Electroplating has been used for more than 100 years to address tribological challenges ( Ref 1 ). Electroplating is routinely used to thinly coat a base material with a metal or metal composite, providing a surface that is resistant to mechanical and chemical degradation while...
Abstract
This article discusses the fundamentals of electroplating processes, including pre-electroplating and surface-preparation processes. It illustrates the four layers of a plating system, namely, top or finish coat, undercoat, strike or flash, and base material layers. The article describes various plating methods, such as pulse electroplating, electroless plating, brush plating, and jet plating. It reviews the types of electrodeposited coatings, including hard coatings and soft coatings. The article also details the materials available for electroplating, including electroplated chromium, electroplated nickel, electroless (autocatalytic) nickel, electroless nickel composite coatings, electroplated gold, and platinum group coatings. These are specifically tailored toward plated coatings for friction, lubrication, and wear technology. The article concludes with a discussion on the common issues encountered with electroplating.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005459
EISBN: 978-1-62708-196-2
... Abstract This article summarizes the general features of microstructure evolution during the thermomechanical processing (TMP) of nickel-base superalloys and the challenges posed by the modeling of such phenomena. It describes the fundamentals and implementations of various modeling...
Abstract
This article summarizes the general features of microstructure evolution during the thermomechanical processing (TMP) of nickel-base superalloys and the challenges posed by the modeling of such phenomena. It describes the fundamentals and implementations of various modeling methodologies. These include JMAK (Avrami) models, topological models, and mesoscale physics-based models.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003732
EISBN: 978-1-62708-177-1
... Abstract Spinodal transformation is a phase-separation reaction that occurs from kinetic behavior. This article discusses the theory of spinodal decomposition, and outlines the methods used in the characterization of spinodal structures in metal matrices. microstructure spinodal...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004019
EISBN: 978-1-62708-185-6
...) The formation of recrystallization nuclei energetically capable of further growth These structural changes do not involve high-angle boundary migration. Therefore, during this stage of annealing, the texture of the deformed metal essentially does not change. Changes in Properties During the early...
Abstract
Recovery, recrystallization, and grain growth are microstructural changes that occur during annealing after cold plastic deformation and/or during hot working of metals. This article reviews the structure of the deformed state and describes the changes in the properties and microstructures of a cold-worked metal during recovery stage. It discusses the recrystallization that occurs by the nucleation and growth of grains. The article also reviews the growth behavior of the grains, explaining that the grain growth can be classified into two types: normal or continuous grain growth and abnormal or discontinuous grain growth. It also examines the key mechanisms that control microstructure evolution during hot working and subsequent heat treatment. These include dynamic recovery, dynamic recrystallization, metadynamic recrystallization, static recovery, static recrystallization, and grain growth.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003677
EISBN: 978-1-62708-182-5
... of Titanium and Titanium-Base Alloys in Aqueous Environments Pure titanium is highly corrosion resistant in aqueous environments that encompass any pH > 2, even those that contain aggressive anionic species (including Cl − ) ( Ref 6 , 7 ). Nevertheless, metallic titanium is thermodynamically reactive...
Abstract
This article provides a background of the complex relationship between titanium and its alloys with aqueous environments, which is dictated by the presence of a passivating oxide film. It describes the corrosion vulnerability of titanium and titanium oxides by the classification of oxide failure mechanisms. The mechanisms are spatially localized oxide film breakdown by the ingress of aggressive anions; spatially local or homogenous chemical dissolution of the oxide in a strong reducing-acid environment; and mechanical disruptions or depassivation such as scratching, abrading, or fretting. Titanium alloys can be classified into three primary groups such as titanium alloys with hexagonal close-packed crystallographic structure; beta titanium alloys with body-centered cubic crystallographic structures; and alpha + beta titanium alloys including near-alpha and near-beta titanium alloys. The article also illustrates the effects of alloying on active anodic corrosion of titanium and repassivation behavior of titanium and titanium-base alloys.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005606
EISBN: 978-1-62708-174-0
.... Accordingly, this class of alloy is easiest to diffusion bond. A second class of material, that is, metals and alloys that exhibit very low solubility for interstitials (such as aluminum-, iron-, nickel-, and cobalt-base alloys), is not readily diffusion bondable. Special consideration must be given...
Abstract
This article provides a qualitative summary of the theory of diffusion bonding, as distinguished from the mechanisms of other solid-state welding processes. Diffusion bonding can be achieved for materials with adherent surface oxides, but the resultant interface strengths of these materials are considerably less than that measured for the parent material. The article describes three stages of diffusion bonding: microasperity deformation, diffusion-controlled mass transport, and interface migration. It concludes with information on diffusion bonding with interface aids.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001350
EISBN: 978-1-62708-173-3
..., zirconium, and niobium. Accordingly, this class of alloy is easiest to diffusion bond. A second class of material, that is, metals and alloys that exhibit very low solubility for interstitials (such as aluminum-, iron-, nickel-, and cobalt-base alloys) are not readily diffusion bondable. Special...
Abstract
Diffusion bonding is only one of many solid-state joining processes wherein joining is accomplished without the need for a liquid interface (brazing) or the creation of a cast product via melting and resolidification. This article offers a qualitative summary of the theory of diffusion bonding. It discusses factors that affect the relative difficulty of diffusion bonding oxide-bearing surfaces. These include surface roughness prior to welding, mechanical properties of the oxide, relative hardness of the metal and its oxide film, and prestraining or work hardening of the material. The article describes the mechanism of diffusion bonding in terms of microasperity deformation, diffusion-controlled mass transport, and interface migration. It concludes with a discussion on diffusion bonding with interface aids.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006028
EISBN: 978-1-62708-172-6
... at relatively low temperatures (110 to 150 °C, or 230 to 300 °F). The cure cycle for an SBT-formulated coating is dictated by the level of SBT in the binder and the selection of organic co-binder. A typical cure for a coating based on 100% SBT would be 30 min at 230 to 250 °C (445 to 480 °F). Metal soap...
Abstract
This article focuses on those areas of coatings technology where silicon-based technology (SBT) is the primary enabling technology and where SBT is used as an additive to provide unique properties to the coating film. It describes the chemistry and the uses of alkoxy silanes. The uses of silicates, siliconates, silicone fluids, and silicone resins in coatings are reviewed. The article discusses the various applications of SBT, namely, primers, heat-resistant coatings, industrial maintenance coatings, hygienic coatings, and abrasion-resistant coatings, and for marine biofouling control. It also provides information on the benefits of silicon-base additives.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009002
EISBN: 978-1-62708-185-6
... of the simulations relative to real time and spatial scales. To address some of these difficulties, Davies ( Ref 26 ) and Raabe ( Ref 30 ) have used two different methods to fix the interface migration rate in CA simulations of static recrystallization. One is based on the theoretical relation between grain boundary...
Abstract
This article reviews the general aspects of microstructure evolution during thermomechanical processing. The effect of thermomechanical processing on microstructure evolution is summarized to provide insight into the aspect of process design. The article provides information on hot working and key processes that control microstructure evolution: dynamic recovery, static recovery, recrystallization, and grain growth. Some of the key phenomenological descriptions of plastic flow and microstructure evolution are also summarized. The article concludes with a discussion on the modeling of microstructure evolution.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006229
EISBN: 978-1-62708-163-4
... are intermediate between the two pure metals, and whose crystalline structures are different from those of the pure metals. The difference in crystalline structure distinguishes intermediate phases from primary solid solutions, which are based on pure metals. Some intermediate phases can accurately be called...
Abstract
In some phase diagrams, the appearance of several reactions is the result of the presence of intermediate phases. These are phases whose chemical compositions are intermediate between two pure metals, and whose crystalline structures are different from those of the pure metals. This article describes the order-disorder transformation that typically occurs on cooling from a disordered solid solution to an ordered phase. It provides a table that lists selected superlattice structures and alloy phases that order according to each superlattice. The article informs that spinodal decomposition has been particularly useful in the production of permanent magnet materials, because the morphologies favor high magnetic coercivities. It also describes the theory of spinodal decomposition with a simple binary phase diagram.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005430
EISBN: 978-1-62708-196-2
... Abstract Diffusion is the process by which molecules, atoms, ions, point defects, or other particle types migrate from a region of higher concentration to one of lower concentration. This article focuses on the diffusivity data and modeling of lattice diffusion in solid-state materials...
Abstract
Diffusion is the process by which molecules, atoms, ions, point defects, or other particle types migrate from a region of higher concentration to one of lower concentration. This article focuses on the diffusivity data and modeling of lattice diffusion in solid-state materials, presenting their diffusion equations. It discusses different methods for evaluating the diffusivity of a material, including the measurement of diffusion coefficients, composition profiles, and layer growth widths. The article reviews the various types of direct and indirect diffusion experiments to extract tracer, intrinsic, and chemical diffusivities. It provides information on the applications of single-phase and multiphase diffusion.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001393
EISBN: 978-1-62708-173-3
... Essentially, a heated metal tip is used to raise the temperature of the metals to be joined or of the joint. As the temperature increases, flux becomes activated, which allows the solder to wet the base metals. Modern Soldering Iron The modern soldering iron consists of an electric resistance heater...
Abstract
This article provides information on soldering iron and the most common soldering iron tip. It describes the classifications of hand soldering equipment based on its temperature control method. These are constant-voltage, variable temperature, and tip-temperature-controlled soldering irons. The article also reviews the selection criteria of the soldering iron.
Book Chapter
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004221
EISBN: 978-1-62708-184-9
... to be an otherwise benign environment. This shows evidence of the electrical nature of corrosion. In Fig. 1 , copper on a printed circuit board has migrated. In Fig. 2 , tin from a soldered terminal formed metal dendrites in the area of highest electrical potential to an adjacent terminal and caused an electrical...
Abstract
This article includes a collection of color images that aid in the identification and classification of forms of corrosion in industries and environments. It emphasizes the negative aspects of corrosion and examines the cost and the effort to test, evaluate, simulate, and prevent corrosion. The ability of corrosion to undo the best complex engineered systems has been documented.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003157
EISBN: 978-1-62708-199-3
... C52100 880 1620 13 80 HRF 84 HRB 400 58 525 76 (a) H04 temper. (b) Depends on heat treatment. (c) TB00 temper. (d) TD02 temper Applications Copper-base metals are commonly used in plugs, jacks, sockets, connectors, and sliding contacts. Because of tarnish films...
Abstract
Electrical contacts are metal devices that make and break electrical circuits. This article describes the property requirements such as electrical conductivity, mechanical properties, chemical properties, fabrication properties, and thermal properties of make-break arcing contacts. The article also focuses on brush contact materials and their interdependence factors for sliding contacts. In addition, the article discusses the properties, manufacturing methods, and applications of electrical contact materials, including wrought materials such as copper metals, silver metals, gold metals, precious metal overlays, tungsten, molybdenum, and aluminum, and composite materials. It concludes by discussing the composite manufacturing methods such as infiltration, press-sinter, press-sinter-repress process, press-sinter-extrude process, internal oxidation, and preoxidized-press-sinter-extrude process, and coprecipitation.
1