Skip Nav Destination
Close Modal
Search Results for
barrel burnishing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 21 Search Results for
barrel burnishing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping...
Abstract
This article discusses surface engineering of nonferrous metals including aluminum and aluminum alloys, copper and copper alloys, magnesium alloys, nickel and nickel alloys, titanium and titanium alloys, zirconium and hafnium, zinc alloys, and refractory metals and alloys. It describes various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping, electrochemical cleaning, mechanical cleaning, and mass finishing. It also examines coating processes such as plating, anodizing, chemical conversion coating, and thermal spray, and concludes with a discussion on oxidation-resistant coatings for refractory metals.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001234
EISBN: 978-1-62708-170-2
... low as 4 rpm for large barrels to 60 rpm for small barrels; surface speeds range from about 6 to 60 m/min (20 to 200 sfm); the higher speeds are used for cutting, the slower speeds for burnishing and fine finishing. Ratio of media to parts ranges from about 3-to-1 to 15-to-1 by volume. Rough work...
Abstract
Mass finishing normally involves loading components to be finished into a container together with abrasive media, water, and compound. This article focuses on basic mass finishing processes, including barrel finishing, vibratory finishing, centrifugal disc and barrel finishing, spindle finishing, and drag finishing. It describes the various factors considered in selecting the most suitable mass finishing process. The article also provides information on consumable materials, process considerations, safety precautions, and waste disposal of mass finishing processes.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
..., deburred, and burnished by barrel finishing. In most instances, the main objective is deburring and/or burnishing, with cleaning being an accidental benefit of the treatment. Deburring sometimes is the final barrel operation, but more often it is followed by burnishing to obtain a smoother finish or one...
Abstract
Aluminum or aluminum alloy products have various types of finishes applied to their surfaces to enhance appearance or improve functional properties. This article discusses the procedures, considerations, and applications of various methods employed in the cleaning, finishing, and coating of aluminum. These include abrasive blast cleaning, barrel finishing, polishing, buffing, satin finishing, chemical cleaning, chemical brightening, electrolytic brightening, chemical etching, alkaline etching, acid etching, chemical conversion coating, electroplating, immersion plating, electroless plating, porcelain enameling, and shot peening.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001310
EISBN: 978-1-62708-170-2
.... This article focuses on mechanical finishing methods, namely, barrel tumbling, polishing, buffing, vibratory finishing, fiber brushing, and shot blasting. It provides useful information on process control and difficulties with chemical and anodic treatments of magnesium alloys. The use and applications...
Abstract
Surface treatments are applied to magnesium parts primarily to improve their appearance and corrosion resistance. Mechanical and chemical cleaning methods are used singly or in combination, depending on the specific application and product involved to ensure repetitive reliability. This article focuses on mechanical finishing methods, namely, barrel tumbling, polishing, buffing, vibratory finishing, fiber brushing, and shot blasting. It provides useful information on process control and difficulties with chemical and anodic treatments of magnesium alloys. The use and applications of plating and organic finishing of magnesium alloys are also reviewed. The article concludes with a description of health and safety precautions to be followed during the surface treatment process.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001255
EISBN: 978-1-62708-170-2
... be burnished in tumbling barrels to give a uniform bright finish. Cosmetic cases are frequently plated with an 85Cu-15Zn alloy to impart a golden appearance; the alloy can be applied as a flash plate or as a heavier plate that is subsequently burnished. Builders hardware plated with a 90Cu-10Zn alloy...
Abstract
Copper alloys are widely used as electroplated coatings. They can also be used with practically any substrate material that is suitable for electroplating. This article focuses on the solution composition and operating conditions for brass and bronze plating solutions. It describes the decorative and engineering applications of brass and bronze plating. The article also provides information on the treatment of waste water from brass and bronze plating operations.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001268
EISBN: 978-1-62708-170-2
...-speed tumbling barrels. Because the entire process takes place at low (1 to 2) pH, the barrels must be lined with an inert, abrasion-resistant protective coating such as neoprene, polypropylene, polybutylene, or urethane. The lining is usually applied at a thickness of 19 to 25 mm (0.75 to 1 in...
Abstract
Mechanical plating is a method for coating ferrous metals, copper alloys, lead, stainless steel, and certain types of castings by tumbling the parts in a mixture of glass beads, metallic dust or powder, promoter or accelerator chemicals, and water. It offers a straightforward alternative method for achieving desired mechanical and galvanic properties with an extremely low risk of hydrogen embrittlement. This article provides a detailed description of the equipment, process steps, process capabilities, applicable parts, specific characteristics, advantages, limitations, post treatments, and waste treatment of mechanical plating.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
..., the parts are pickled in a 1 to 2% sulfuric acid solution and rinsed. Clear water and additives, burnishing compounds, are added, and the parts are rolled until the desired finish is obtained. If the work appears to darken during water rolling, the medium should be dumped, the barrel and parts rinsed...
Abstract
The selection of surface treatments for copper and copper alloys is generally based on application requirements for appearance and corrosion resistance. This article describes cleaning, finishing, and coating processes for copper and copper alloys. These processes include pickling and bright dipping, abrasive blast cleaning, chemical and electrochemical cleaning, mass finishing, polishing and buffing, electroless plating, immersion plating, electroplating, passivation, coloring, and organic coatings.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
Abstract
Distortion often is observed in the analysis of other types of failures, and consideration of the distortion can be an important part of the analysis. This article first considers that true distortion occurs when it was unexpected and in which the distortion is associated with a functional failure. Then, a more general consideration of distortion in failure analysis is introduced. Several common aspects of failure by distortion are discussed and suitable examples of distortion failures are presented for illustration. The article provides information on methods to compute load limits, errors in the specification of the material, and faulty process and their corrective measures to meet specifications. It discusses the general process of material failure analysis and special types of distortion and deformation failure.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001315
EISBN: 978-1-62708-170-2
...); speeds ranging from 1080 to 1200 m/min (3500 to 4000 ft/min) often are used ( Ref 5 , 6 ). Tumbling in barrels loaded with abrasive media such as limestone, preformed and fused alumina, ceramic shapes, or abrasive-loaded plastic chips can be used to remove parting line burrs. A lubricant such as soap...
Abstract
Zinc and zinc alloys require surface engineering prior to coating or use to improve adhesion and corrosion resistance. Die-cast zinc parts, in addition, must be trimmed and finished to remove flash and parting lines. This article covers zinc cleaning procedures as well as coating and finishing processes. It explains how to remove parting lines and presents several mechanical finishing methods, including surface polishing, brushing, controlled shot peening, and buffing. It also provides information on solvent cleaning, emulsion cleaning, aqueous detergent or alkaline cleaning), electrocleaning, acid dipping, and zinc conversion coating treatments.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... environment where the gas density is low and the mean free path for collision is very long. In vacuum-barrel deposition processing, this means that the pressure is lower than about 1.3 mPa (1 × 10 −5 torr). A plasma is a low-pressure gas that contains enough ions and electrons to have an appreciable...
Abstract
This article begins with a list of the factors that influence the properties of physical vapor deposited films. It describes the steps involved in ion plating, namely, surface preparation, nucleation, interface formation, and film growth. The article discusses the factors influencing the properties of ion-plated films. The sources of potential applied on substrate surface, bombarding species, and depositing species are addressed. The article also provides information on the parameters that influence bombardment. It concludes with a discussion on the advantages, limitations, and applications of ion plating.
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001261
EISBN: 978-1-62708-170-2
... operations can be done with the same equipment and similar electrodes. Only the solutions are different. Selective plating of small parts is more the exception than the rule, and large volumes of small parts are more economically plated by high-production-rate processes, such as barrel plating. Plating of...
Abstract
Selective plating, also known as brush plating, differs from traditional tank or bath plating in that the workpiece is not immersed in a plating solution (electrolyte). Instead, the electrolyte is brought to the part and applied by a handheld anode or stylus, which incorporates an absorbent wrapping for applying the solution to the workpiece (cathode). This article focuses on the selective plating systems that include a power pack, plating tools, anode covers, specially formulated plating solutions, and any auxiliary equipment required for the particular application. It provides a detailed account of the applications of selective plating, with examples. The article describes the advantages, limitations, key process elements, and health and safety considerations of selective plating. It also includes the most important industrial, government, and military specifications.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001306
EISBN: 978-1-62708-170-2
... parts. Wet tumbling is not suitable for deburring P/M parts because of the difficulty of removing the tumbling liquid from the pores of the parts. During self-tumbling, the workpieces are tumbled in a revolving barrel. This method provides an economical and efficient means of deburring, but is...
Abstract
Specialty steels encompass a broad range of ferrous alloys noted for their special processing characteristics (powder metallurgy alloys), corrosion resistance (stainless steels), wear resistance and toughness (tool steels), high strength (maraging steels), or magnetic properties (electrical steels). This article provides a detailed discussion on the various surface treatments, including cleaning, nitriding, carburizing, coating, and plating, performed on specialty steels.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... pickling solutions (Formulas 1 and 2). However, Formula 8 may be used for occasional small jobs if ceramic vessels or wooden barrels are used as containers. The solution can be heated and agitated by injecting live steam, either through a rubber hose or through a carbon pipe that has a perforated carbon...
Abstract
Nickel alloys can be divided into four groups: high-nickel alloys, nickel-copper alloys, nickel-chromium alloys, and nickel-iron-chromium alloys. Alloys within each composition group that has similar surface conditions are pickled in the same solutions using the same procedures. This article discusses the procedures used for pickling nickel and nickel alloys. It discusses three different surface conditions for pickling these nickel alloys: bright annealed white surface requiring removal of tarnish by flash pickling; bright annealed oxidized surface requiring removal of a layer of reduced oxide, sometimes followed by a flash pickle to brighten; and black or dark-colored surface requiring removal of adherent oxide film or scale. The article also reviews specialized pickling operations of nickel alloys and various cleaning and finishing operations, including grinding, polishing, buffing, brushing, and blasting.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
.... At barrel speeds of 43,000 to 51,000 mm/min (1700 to 2000 in./min), parts have been cleaned satisfactorily in about 1 h. Complete barrel loading procedures for three barrels, ranging from 0.02 to 0.25 m 3 (0.75 to 8.85 ft 3 ) capacity, are given in Table 4 . Table 4 Mass finishing conditions...
Abstract
This article reviews cleaning and finishing operations that have proven to be effective on titanium, its alloys, and semi-fabricated titanium products. It explains how to remove scale, tarnish films, grease, and other soils and how to achieve required finishes and/or improve wear and oxidation resistance through the use of polishing, buffing, and wire brushing operations. The article also covers a wide range of surface modification and coating processes, including ion implantation, diffusion, chemical and physical vapor deposition, plating, anodizing, and chemical conversion coatings as well as sprayed and sol-gel coatings and laser and electron-beam treatments.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004037
EISBN: 978-1-62708-185-6
... 287.2 1586 230 10.9 36.9 8 1939 281.2 1558 226 10.9 36.3 9 1947 282.4 1558 226 12.5 47.8 10 1955 283.6 1572 228 12.5 48.6 Test Result for Propeller Barrel, Part(b) Test specimen Tensile strength Yield strength Elongation,% Reduction in area...
Abstract
Control of grain flow is one of the major advantages of shaping metal parts by rolling, forging, or extrusion. This article shows the effects of anisotropy on mechanical properties. Cylindrical forgings commonly have a straight parting line located in a diametral plane. The alternate classes of parting lines are called either "straight" or "broken" for brevity. Regardless of whether draft is applied or natural, the forging will have its maximum spread or girth at the parting line. Proper placement of the parting line ensures that the principal grain flow direction within the forging will be parallel to the principal direction of service loading. The article reviews the mutual dependence of parting line and forging process. It provides a checklist for the forging designer that suggests a systematic approach for establishing parting line location. Finally, the article contains examples, with illustrations of parting line locations, accompanied by tables of design parameters.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
... a barrel and detonated using a spark. The high-temperature, high-pressure detonation wave moving down the barrel heats the powder particles to their melting points or above and accelerates them to a velocity of about 750 m/s. By changing the fuel gas and some other parameters, the Super D-Gun...
Abstract
This article introduces thermal spray coatings and describes the various types of coating processes and coating devices, including the flame spray, electric-arc spray, plasma spray, transferred plasma arc, high-velocity oxyfuel, and detonation gun. It provides information on the surface preparation methods and finishing treatments of coated parts. The article also explains the tests to evaluate the coating quality and the effects of coating structures and mechanical properties on coated parts. It concludes with a discussion on the uses of thermal spray coatings.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
Abstract
This article focuses on the significant fundamental powder characteristics, which include particle size, particle size distribution, particle shape, and powder purity, followed by an overview of general and individual powder production processes such as mechanical, chemical, electrochemical, atomizing, oxide reduction, and thermal decomposition processes. It also covers the consolidation of powders by pressing and sintering, as well as by high density methods. Further emphasis is provided on the distinguishing features of powders, their manufacturing processes, compacting processes, and consolidated part properties. In addition, a glossary of powder metallurgy terms is included.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001277
EISBN: 978-1-62708-170-2
Abstract
Painting is a generic term for the application of a thin organic coating to the surface of a material for decorative, protective, or functional purposes. This article provides a detailed account of the types and selection factors of paints and the various application methods, including conventional air atomized, airless, and electrostatic spray; roller coating; dip coating; flow coating; curtain coating; tumble coating; electrocoating; and powder coating. Surface preparation methods and prepaint treatments for coating systems are also discussed. The article includes information on quality control procedures, causes of paint film defects, cost calculation, and safety and environmental precautions. The composition and characteristics of organic coatings, coating system selection factors, the types of paints for structural steel, and the applications of paint on structural steel are also reviewed.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... centrifugal barrel finishing. Mass finishing methods are adaptable to removal of burrs, scale, and residual flux, and they also can be used for light surface treatment, such as cleaning, burnishing, or coloring. For more information, see the article “Mass Finishing Methods” in this Volume. This section...
Abstract
Passivation; pickling, that is, acid descaling; electropolishing; and mechanical cleaning are important surface treatments for the successful performance of stainless steel used for piping, pressure vessels, tanks, and machined parts in a wide variety of applications. This article provides an overview of the various types of stainless steels and describes the commonly used cleaning methods, namely, alkaline cleaning, emulsion cleaning, solvent cleaning, vapor degreasing, ultrasonic cleaning, and acid cleaning. Finishing operations of stainless steels, such as grinding, polishing, and buffing, are reviewed. The article also explains the procedures of electrocleaning, electropolishing, electroplating, painting, surface blackening, coloring, terne coatings, and thermal spraying. It includes useful information on the surface modification of stainless steels, namely, ion implantation and laser surface processing. Surface hardening techniques, namely, nitriding, carburizing, boriding, and flame hardening, performed to improve the resistance of stainless steel alloys are also reviewed.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3