1-20 of 21 Search Results for

barrel burnishing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003221
EISBN: 978-1-62708-199-3
... various techniques to improve functional surface properties and enhance the appearance of product forms. The article discusses various cleaning and finishing techniques such as abrasive blast cleaning, polishing and buffing, barrel burnishing, chemical cleaning, pickling, etching and bright dipping...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001234
EISBN: 978-1-62708-170-2
... low as 4 rpm for large barrels to 60 rpm for small barrels; surface speeds range from about 6 to 60 m/min (20 to 200 sfm); the higher speeds are used for cutting, the slower speeds for burnishing and fine finishing. Ratio of media to parts ranges from about 3-to-1 to 15-to-1 by volume. Rough work...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
..., deburred, and burnished by barrel finishing. In most instances, the main objective is deburring and/or burnishing, with cleaning being an accidental benefit of the treatment. Deburring sometimes is the final barrel operation, but more often it is followed by burnishing to obtain a smoother finish or one...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001310
EISBN: 978-1-62708-170-2
.... This article focuses on mechanical finishing methods, namely, barrel tumbling, polishing, buffing, vibratory finishing, fiber brushing, and shot blasting. It provides useful information on process control and difficulties with chemical and anodic treatments of magnesium alloys. The use and applications...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001255
EISBN: 978-1-62708-170-2
... be burnished in tumbling barrels to give a uniform bright finish. Cosmetic cases are frequently plated with an 85Cu-15Zn alloy to impart a golden appearance; the alloy can be applied as a flash plate or as a heavier plate that is subsequently burnished. Builders hardware plated with a 90Cu-10Zn alloy...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001268
EISBN: 978-1-62708-170-2
...-speed tumbling barrels. Because the entire process takes place at low (1 to 2) pH, the barrels must be lined with an inert, abrasion-resistant protective coating such as neoprene, polypropylene, polybutylene, or urethane. The lining is usually applied at a thickness of 19 to 25 mm (0.75 to 1 in...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
..., the parts are pickled in a 1 to 2% sulfuric acid solution and rinsed. Clear water and additives, burnishing compounds, are added, and the parts are rolled until the desired finish is obtained. If the work appears to darken during water rolling, the medium should be dumped, the barrel and parts rinsed...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006797
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001315
EISBN: 978-1-62708-170-2
...); speeds ranging from 1080 to 1200 m/min (3500 to 4000 ft/min) often are used ( Ref 5 , 6 ). Tumbling in barrels loaded with abrasive media such as limestone, preformed and fused alumina, ceramic shapes, or abrasive-loaded plastic chips can be used to remove parting line burrs. A lubricant such as soap...
Book Chapter

By Donald M. Mattox
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001289
EISBN: 978-1-62708-170-2
... environment where the gas density is low and the mean free path for collision is very long. In vacuum-barrel deposition processing, this means that the pressure is lower than about 1.3 mPa (1 × 10 −5 torr). A plasma is a low-pressure gas that contains enough ions and electrons to have an appreciable...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001261
EISBN: 978-1-62708-170-2
... operations can be done with the same equipment and similar electrodes. Only the solutions are different. Selective plating of small parts is more the exception than the rule, and large volumes of small parts are more economically plated by high-production-rate processes, such as barrel plating. Plating of...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001306
EISBN: 978-1-62708-170-2
... parts. Wet tumbling is not suitable for deburring P/M parts because of the difficulty of removing the tumbling liquid from the pores of the parts. During self-tumbling, the workpieces are tumbled in a revolving barrel. This method provides an economical and efficient means of deburring, but is...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001314
EISBN: 978-1-62708-170-2
... pickling solutions (Formulas 1 and 2). However, Formula 8 may be used for occasional small jobs if ceramic vessels or wooden barrels are used as containers. The solution can be heated and agitated by injecting live steam, either through a rubber hose or through a carbon pipe that has a perforated carbon...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001311
EISBN: 978-1-62708-170-2
.... At barrel speeds of 43,000 to 51,000 mm/min (1700 to 2000 in./min), parts have been cleaned satisfactorily in about 1 h. Complete barrel loading procedures for three barrels, ranging from 0.02 to 0.25 m 3 (0.75 to 8.85 ft 3 ) capacity, are given in Table 4 . Table 4 Mass finishing conditions...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004037
EISBN: 978-1-62708-185-6
... 287.2 1586 230 10.9 36.9  8 1939 281.2 1558 226 10.9 36.3  9 1947 282.4 1558 226 12.5 47.8 10 1955 283.6 1572 228 12.5 48.6 Test Result for Propeller Barrel, Part(b) Test specimen Tensile strength Yield strength Elongation,% Reduction in area...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001282
EISBN: 978-1-62708-170-2
... a barrel and detonated using a spark. The high-temperature, high-pressure detonation wave moving down the barrel heats the powder particles to their melting points or above and accelerates them to a velocity of about 750 m/s. By changing the fuel gas and some other parameters, the Super D-Gun...
Book Chapter

By Erhard Klar
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003185
EISBN: 978-1-62708-199-3
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001277
EISBN: 978-1-62708-170-2
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001305
EISBN: 978-1-62708-170-2
... centrifugal barrel finishing. Mass finishing methods are adaptable to removal of burrs, scale, and residual flux, and they also can be used for light surface treatment, such as cleaning, burnishing, or coloring. For more information, see the article “Mass Finishing Methods” in this Volume. This section...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.9781627081863
EISBN: 978-1-62708-186-3