Skip Nav Destination
Close Modal
Search Results for
balance equations
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 651
Search Results for balance equations
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005208
EISBN: 978-1-62708-187-0
... Abstract This article begins with balance equations for mass, momentum, energy, and solute and the necessary boundary conditions for solving problems of interest in casting and solidification. The transport phenomena cover a vast range of length and time scales, from atomic dimensions up...
Abstract
This article begins with balance equations for mass, momentum, energy, and solute and the necessary boundary conditions for solving problems of interest in casting and solidification. The transport phenomena cover a vast range of length and time scales, from atomic dimensions up to macroscopic casting size and from nanoseconds for interface attachment kinetics to hours for casting solidification. The article describes how to determine which phenomena are most important at the particular length and time scale for the problem. It concludes with several examples of the application of transport phenomena in solidification, focusing on microstructure formation.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005437
EISBN: 978-1-62708-196-2
... Abstract This article presents the governing equations for moving a solidification front, based on the balance of mass, momentum, energy, and solute. It reviews how material properties and geometry can be analyzed in the context of the governing equations. The article provides several example...
Abstract
This article presents the governing equations for moving a solidification front, based on the balance of mass, momentum, energy, and solute. It reviews how material properties and geometry can be analyzed in the context of the governing equations. The article provides several example problems that illustrate how the hierarchy of time and length scales associated with transport leads to the important features of cast microstructures. It includes equations for estimating microsegregation in cast alloys.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005456
EISBN: 978-1-62708-196-2
... element) by taking two cuts perpendicular to the principal direction, X i , with thickness dX i and the other dimensions defined by the tooling. Derive equilibrium equations (differential equations) by balancing the forces on this differential element in the principal directions. Solve...
Abstract
This article focuses on approximate closed-form analytical methods, such as slab and upper bound methods, used for forward and inverse design of metal forming problems. Selected examples of application of these methods to metal forming processes are also discussed.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005233
EISBN: 978-1-62708-187-0
... that total energy, in all its forms, must be conserved These three principles lead to the basic three equations of motion: the mass, or continuity, equation; the momentum equation; and the total energy equation. Each of the articles that follow in this Section develops these fundamental balance...
Abstract
Computational fluid dynamics (CFD) is one of the tools available for understanding and predicting the performance of thermal-fluids systems. This article qualitatively describes the basic principles of CFD. The numerical methods, such as geometry description and discretization, used to solve the CFD equations are discussed. The article also demonstrates the application of CFD to a few casting problems.
Book
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.9781627081870
EISBN: 978-1-62708-187-0
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005234
EISBN: 978-1-62708-187-0
... as unity, g s + g 1 = 1. A conservation equation describing the thermal energy transport in this system, dating back to the middle of the last century ( Ref 8 ), is obtained by writing the heat balance in terms of enthalpy. The solid ( H s ) and liquid ( H l ) phase enthalpies can be defined as: (Eq...
Abstract
This article examines the critical features of four key areas of modeling transport phenomena associated with casting processes. These include heat and species transport in a metal alloy, flow of the liquid metal, tracking of the free metal-gas surface, and inducement of metal flow via electromagnetic fields. Conservation equations that represent important physical phenomena during casting processes are presented. The article provides a discussion on how the physical phenomena can be solved. It provides information on a well-established array of general and specific computational tools that can be readily applied to modeling casting processes. The article also summarizes the key features of the conservation equations in these tools.
Book Chapter
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005542
EISBN: 978-1-62708-197-9
... * = composition of liquid C O = initial melt composition Transport equations Balance equations during solidification 3 Mass balance ∂ ρ ∂ t + ∇ ⋅ ( ρ v ) = 0 ρ = density v = velocity t = time Momentum balance ∂ ρ v...
Abstract
This article is a comprehensive collection of tables containing formulas for metals processing, namely, casting and solidification, flat (sheet) rolling, conical-die extrusion, wire drawing, bending, and deep drawing. Formulas for compression, tension, and torsion testing of isotropic materials are included. The article also lists the formulas for effective stress, strain, and strain rate (isotropic material) in arbitrary and principal coordinates; dimensionless groups in fluid mechanics; and anisotropic sheet materials at various loading conditions.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005593
EISBN: 978-1-62708-174-0
... are discussed, in addition to an explanation of the mechanisms of bonding for solid projection welding. The article reviews how these mechanisms are affected by heat balance, current profile, and mechanical characteristics of the welding equipment. It also presents the design of projection welding mechanical...
Abstract
This article provides a fundamentals-based description of solid-state resistance projection welding. It details simple analytical tools to understand the variety of mechanisms that occur during resistance projection welding. Factors relating to the quality of solid projection are discussed, in addition to an explanation of the mechanisms of bonding for solid projection welding. The article reviews how these mechanisms are affected by heat balance, current profile, and mechanical characteristics of the welding equipment. It also presents the design of projection welding mechanical systems.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005503
EISBN: 978-1-62708-197-9
... demonstrated in plastics but adapt those concepts in new, customized PIM simulations for filling, packing, and cooling. Theoretical Background and Governing Equations A typical injection-molded component has a thickness much smaller than the overall largest dimension. A typical wall thickness...
Abstract
This article focuses on the axisymmetric 2.5-dimensional approach used in metal powder injection molding (PIM) simulations. It describes three stages of PIM simulations: filling, packing, and cooling. The article discusses the process features of numerical simulation of PIM, such as filling and packing analysis, cooling analysis, and coupled analysis between filling, packing, and cooling stages. It explains the experimental material properties and verification for filling, packing, and cooling stages in the PIM simulations. The article presents simulation results from some of the 2.5-dimensional examples to demonstrate the usefulness of the computer-aided engineering analysis and optimization capability of the PIM process.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005525
EISBN: 978-1-62708-197-9
.... No significant gas voids form; that is, the sum of the volume fractions of the solid (S) and liquid (L) can be taken as unity, g S + g L = 1. A conservation equation describing the thermal energy transport in this system is obtained by writing the heat balance in terms of enthalpy. The solid ( h S...
Abstract
This article presents conservation equations for heat, species, mass, and momentum to predict transport phenomena during solidification processing. It presents transport equations and several examples of their applications to illustrate the physics present in alloy solidification. The examples demonstrate the utility of scaling analysis to explain the fundamental physics in a process and to demonstrate the limitations of simplifying assumptions. The article concludes with information on the solidification behavior of alloys as predicted by full numerical solutions of the transport equations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005592
EISBN: 978-1-62708-174-0
.... The momentum balance equation is further simplified by assuming negligible inertia and body forces as follows: (Eq 6) ∇ ⋅ σ = 0 where σ is the stress. Typically, a rate-independent elastoplastic material response is assumed in the mechanical analysis, allowing for the computation of residual...
Abstract
Fusion welding induces residual stresses and distortion, which may result in loss of dimensional control, costly rework, and production delays. In thermal analysis, conductive heat transfer is considered through the use of thermal transport, heat-input, and material models that provide values for the applied welding heat input. This article describes how the solid-phase transformations that occur during the thermal cycle produced by welding lead to irreversible plastic deformation known as transformation plasticity. Residual stress and welding distortion are also discussed.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.9781627081962
EISBN: 978-1-62708-196-2
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005439
EISBN: 978-1-62708-196-2
... in a material varies with respect to distance and time, C ( x , t ). This is obtained from the diffusion equation, which is given subsequently. The diffusion equation is derived by performing a mass balance on a small-volume element in an alloy. As illustrated in Fig 2 , the flux into the volume element...
Abstract
This article presents various equations that are essential for the modeling of both single-phase and multiphase profiles. It includes the fundamental laws of diffusion, along with its equations and solutions. The article provides information on the series of applications that illustrate how various diffusional processes can be modeled.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005637
EISBN: 978-1-62708-174-0
... the processes that occur during FSW. Numerical Modeling Standalone material flow models, although physically inaccurate, do provide significant insight into the process when done in tandem with experimental results. The mass and momentum balance equations form the basic building block...
Abstract
Friction stir welding (FSW) involves plastic deformation at high strain rates and elevated temperatures with resultant microstructural changes leading to joining. This article provides a link between deformation and FSW process parameters and summarizes the results of experimental temperature measurements during FSW of various metals. It considers the physical explanation of the heat input during FSW and the possible methods of their estimation. The article presents the experimental results of two analytical models, supplemented by experimental/numerical flow models on material flow during FSW. The types of defects, processing parameters affecting the generation of these defects, and results of theoretical models and simulations to understand the formation and control of defects during FSW are discussed. The article concludes with information on the microstructure and its distribution produced during FSW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005636
EISBN: 978-1-62708-174-0
... welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty...
Abstract
This article provides a comprehensive review and critical assessment of numerical modeling of heat and mass transfer in fusion welding. The different fusion welding processes are gas tungsten arc welding, gas metal arc welding, laser welding, electron beam welding, and laser-arc hybrid welding. The article presents the mathematical equations of mass, momentum, energy, and species conservation. It reviews the applications of heat transfer and fluid flow models for different welding processes. Finally, the article discusses the approaches to improve reliability of, and reduce uncertainty in, numerical models.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002482
EISBN: 978-1-62708-194-8
... relations, constitutive equations, and, in some instances, the heat balance equation. In addition, one needs to apply appropriate boundary conditions. These may comprise displacement/velocity imposed on a part of the surface while stress is imposed on the remainder of the surface, heat transfer, or any...
Abstract
Manufacturing processes typically involve the reshaping of materials from one form to another under a set of processing conditions. This article discusses the two classification schemes of modeling for manufacturing processes, namely, on-line or off-line models and empirical, mechanistic, or deterministic models along with their important considerations. It describes the various aspects of modeling of deformation processes, casting operations, and fusion welding processes, with examples.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005529
EISBN: 978-1-62708-197-9
.... The energy balance equation of the part is: (Eq 14) E storage = E convection + E radiation where E storage is the heat stored in the part, and E convection and E radiation are the heat obtained from convection and radiation heat transfer, respectively. Let...
Abstract
This article provides information on the heat-source model, conduction heat-transfer model of parts and fixtures, and the radiation heat-transfer and convection heat-transfer models in a furnace. It describes the two types of furnaces used for heat treating: batch furnaces and continuous furnaces. The heating methods, such as direct-fired heating, radiant-tube heating, and electrical heating, are also discussed. Furnace temperature control is essential to ensure quality heat treatment. The article explains the operating procedure of the automatic temperature controllers used in most furnace operations. Heating simulations can be validated by comparison with measured results in full-scale furnaces. The article also presents several case studies to illustrate the use of the simulations.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005536
EISBN: 978-1-62708-197-9
... through the α+ε two-phase region, indicating that there are no solutions to the flux balance equations assuming ε/γ′-bilayer growth. With a C = 4.0, the line cuts through the cementite + ε and α + cementite + ε regions, and therefore, the compound layer is predicted to contain the cementite phase. Du...
Abstract
This article focuses on the modeling and simulation of diffusion-controlled processes related to both materials processing such as heat treatments, and materials degradation from a practical perspective by using the one-dimensional (1-D) sharp interface approach. It describes various diffusion simulation models, such as one-phase simulations, moving phase-boundary simulations, and dispersed system simulations. The article presents case studies that illustrate some examples where diffusion simulations have been applied to industrial-based problems, with an emphasis on the approaches used and the lessons learned from performing such simulations.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005434
EISBN: 978-1-62708-196-2
... (Eq 41b) x i = C i C For a mixture, the mean molar mass, M , used in Eq 27 can be simply obtained from: (Eq 42) 1 M = ∑ i = 1 N ω i M i = 1 ∑ i = 1 N x i M i Only N − 1 balance equations ( Eq 40...
Abstract
This article focuses on transport phenomena and modeling approaches that are specific to vapor-phase processes (VPP). It discusses the VPP for the synthesis of materials. The article reviews the basic notions of molecular collisions and gas flows, and presents transport equations. It describes the modeling of vapor-surface interactions and kinetics of hetereogeneous processes as well as the modeling and kinetics of homogenous reactions in chemical vapor deposition (CVD). The article provides information on the various stages of developing models for numerical simulation of the transport phenomena in continuous media and transition regime flows of VPP. It explains the methods used for molecular modeling in computational materials science. The article also presents examples that illustrate multiscale simulations of CVD or PVD processes and examples that focus on sputtering deposition and reactive or ion beam etching.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
..., recrystallization, strain softening, and precipitate overaging Damaging processes, such as cavitation and cracking, and specimen necking. Of these factors, strain hardening tends to decrease the creep rate, whereas the other factors tend to increase the creep rate. The balance among these factors...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
1