1-20 of 91 Search Results for

bacteria-induced corrosion

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003699
EISBN: 978-1-62708-182-5
... causes of corrosion inhibition in waterfloods: oxygen contamination and acid gases dissolved in the brine. A discussion on the bacteria-induced corrosion is provided. The article also explains various tests available for field corrosion monitoring. It details the methods used to monitor corrosion rates...
Image
Published: 01 January 2003
Fig. 13 Anaerobic biological corrosion of cast iron. (a) Cast iron pipe section exhibiting external pitting caused by bacteria. (b) Cast iron pipe showing penetration by bacteria-induced pitting corrosion. Source: Ref 10 More
Image
Published: 15 January 2021
Fig. 11 Micrograph of large bacteria (sulfur-reducing bacteria) that are rod shaped. Note this is a chain of two bacteria cultured from microbiologically induced corrosion product of the pipe failure shown in Fig. 12 . Original magnification: 400×. Courtesy of MDE Engineers, Inc. More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003637
EISBN: 978-1-62708-182-5
... of cast iron. (a) Cast iron pipe section exhibiting external pitting caused by bacteria. (b) Cast iron pipe showing penetration by bacteria-induced pitting corrosion. Source: Ref 10 In the early decades of this century, it was generally believed that the SRB could influence the corrosion of steel...
Image
Published: 01 January 2002
Fig. 11 Micrograph of large bacteria (SRB) that are rod shaped. Note this is a chain of two bacteria cultured from microbiologically induced corrosion product of the pipe failure shown in Fig. 12 . 400×. Courtesy of MDE Engineers, Inc. More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003670
EISBN: 978-1-62708-182-5
... Abstract This article explains how an engineer might go about assessing the risk of microbiologically influenced corrosion (MIC) in an industrial situation. It describes the systems that are susceptible to the effects of MIC by sulfate-reducing bacteria (SRB). The article discusses the effects...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004130
EISBN: 978-1-62708-184-9
... of SRB or iron/sulfur-oxidizing bacteria at mesophilic (23 °C, or 73 °F) or thermophilic (70 °C, or 158 °F) temperatures. Using the model in Ref 86 , one would predict that titanium would be immune to SRB-induced corrosion. There are no standard free energy reaction data for the formation of a titanium...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... types of microorganisms in MIC ( Ref 15 ). Corrosion Mechanisms Involving Sulfate-Reducing Prokaryotes The link between sulfate-reducing bacteria (SRB) and corrosion was first noted more than a century ago ( Ref 16 ) and is still recognized as being of primary importance in MIC. Today (2020...
Book Chapter

Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004221
EISBN: 978-1-62708-184-9
... that had sat on a Ti-6Al-4V stem. Note the dark and discolored region inside the taper recess and the signs of etching. See the article “Mechanically Assisted Corrosion of Metallic Biomaterials” in this Volume. Microbiologically Induced Corrosion Bacteria and other microorganisms can paint some...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003647
EISBN: 978-1-62708-182-5
... potential or corrosion potential ( E corr ) ( Ref 15 , 16 ). Iron-oxidizing bacteria produce tubercles of iron oxides and hydroxides creating oxygen-concentration cells that initiate a series of events that individually or collectively are very corrosive. Other microorganisms promote corrosion of iron...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004102
EISBN: 978-1-62708-184-9
... of oxygen concentration differential cell corrosion. Another challenge is the presence of microorganisms in the raw water that may contribute to MIC, which can cause failures in service water piping and heat exchangers. Types of bacteria related to MIC include sulfate reducing bacteria (SRB), acid...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004104
EISBN: 978-1-62708-184-9
... of aerobic bacteria, which lives on the walls of the sewer above the flowline, reacts with hydrogen sulfide and oxygen to form sulfuric acid. Sulfuric acid is corrosive to steel, concrete, and copper. The following terms are important for understanding and analyzing the conditions for generation of hydrogen...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004213
EISBN: 978-1-62708-184-9
...) is defined as corrosion that is influenced by the presence and activities of microorganisms, including bacteria and fungi. It has been estimated that 20 to 30% of external corrosion on underground pipelines is MIC-related ( Ref 5 ). Microorganisms located at the metal surface do not directly attack the metal...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004105
EISBN: 978-1-62708-184-9
... with bare metal in between, will be more likely to induce structurally significant corrosion than a film that produces a continuous and homogeneous layer. The general properties of ocean water and their effects on corrosion are discussed in the next section. The major and minor features, including...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003606
EISBN: 978-1-62708-182-5
... of corrosion attack is referred to as pitting corrosion and can be observed on aluminum and its alloys, zinc (hot dip zinc or electrodeposited zinc on steel), stainless steels, nickel, and other metals. It is often induced by the presence of chloride ions, which can be found in airborne salinity in marine...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... SIMS secondary ion mass spectroscopy SLC sustained load cracking SMAW shielded metal arc welding SMIE solid metal induced embrittlement S-N stress-number of cycles SRB sulfate-reducing bacteria SSC sulfide-stress cracking tc critical thickness T thickness T throat T temperature Tc recrystallization...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003814
EISBN: 978-1-62708-183-2
... of the nickel alloys designed to resist aqueous corrosion possess higher resistance to hydrochloric acid and chloride-induced phenomena (pitting, crevice attack, and stress-corrosion cracking) than the stainless steels. Nickel alloys are also among the few metallic materials capable of withstanding warm...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003701
EISBN: 978-1-62708-182-5
... Corrosion in condensate/feedwater systems occurs because of low pH induced by carbonic acid, resulting from the reaction of water with CO 2 gas coming from the boiler. The CO 2 may originate from condenser air-inleakage or bicarbonate alkalinity in the feedwater. The buildup of the acid reduces...