1-20 of 439

Search Results for axial fatigue testing machines

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2000
Fig. 1 Modern servohydraulic axial fatigue testing machine. (a) Basic load train. (b) Hydraulic actuator, servovalve, and displacement sensor (LVDT) More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... Abstract This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial...
Image
Published: 01 December 1998
Fig. 37 Typical fatigue life test specimens. (a) Torsional specimen. (b) Rotating cantilever beam specimen. (c) Rotating beam specimen. (d) Plate specimen for cantilever reverse bending. (e) Axial loading specimen. The design and type of specimen used depend on the fatigue testing machine used More
Image
Published: 01 January 1996
Fig. 9 Typical fatigue life test specimens. (a) Torsional specimen. (b) Rotating cantilever beam specimen. (c) Rotating beam specimen. (d) Plate specimen for cantilever reverse bending. (e) Axial loading specimen. The design and type of specimen used depend on the fatigue testing machine used More
Image
Published: 01 January 1990
Fig. 16 Tension-compression fatigue curves for air-melted and electroslag-remelted heats of H13 steel. Axial fatigue tests performed in an Ivy machine at a frequency of 60 Hz; the stresses were fully reversed for all tests ( R = −1). Open symbols indicate longitudinal fatigue data; filled More
Image
Published: 01 January 1990
Fig. 15 Tension-tension fatigue curves for longitudinal specimens of air-melted and electroslag-remelted heats of H13 steel. Axial fatigue tests performed in an Ivy machine at a frequency of 60 Hz; the alternating stress was 67% of the mean stress for all tests ( R = 0.2). Arrows signify More
Image
Published: 30 November 2018
Fig. 6 Stress/number of cycles to fatigue curves resulting from stress-controlled fatigue testing of powder metallurgy aluminum alloy AC-2236, fully reversed (R = −1). Machined test bars, axial loading. Source: Ref 63 More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003668
EISBN: 978-1-62708-182-5
... to the test section and may be identical, particularly for axial fatigue tests. The transition from the grip ends to the test area is designed with large, smoothly blended radii to eliminate stress concentrations in the transition. The design and type of specimen depend on the fatigue-testing machine...
Image
Published: 01 January 2000
Fig. 2 Schematic of a rotating eccentric crank and lever fatigue testing machine for axial (direct-stress) loading More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003320
EISBN: 978-1-62708-176-4
... and tension-compression can be loaded independently in phase or out of phase. Figure 5 shows a biaxial fatigue testing machine of this type. Figure 6 shows the extensometer used to measure axial and angular displacement. A cylindrical specimen ( Fig. 7 ) is the standard geometry for this type of testing...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006114
EISBN: 978-1-62708-175-7
... gear testing rig. Test setup for rolling contact fatigue of surface densified gears. Courtesy of PMG The test rig consists of two parallel shafts, one fixed axially and the other free to float axially. Mounted on each shaft are a helical slave gear and a spur test gear. The gears on each shaft...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002368
EISBN: 978-1-62708-193-1
... - 1040 MPa), where the stress range at N = 0.5 × 10 6 cycles is only 26.5 MPa (3.8 ksi). However, static strength may have a significant effect for rolled threads ( Fig. 2 ). Fig. 2 Axial fatigue strength at 10 7 cycles of bolt-nut assemblies with rolled threads and machined threads ( R = −1...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003269
EISBN: 978-1-62708-176-4
... to sheet materials. Furthermore, the test equipment required to provide the several different types of loads is complicated ( Ref 21 ). One facility used for multiaxial fatigue testing consists of a servohydraulic axial/torsion machine (up to 400 kN axial load and 1000 N · m torque) fitted with two...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
... Abstract This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002367
EISBN: 978-1-62708-193-1
... Fatigue crack initiation site 1 Plain plate, machined edges Axial Corners 1(F) Plain plate, flame-cut edges Axial Edges 2 Rolled I-beam Bending Corners 2A Riveted I-beam Bending Holes 3 Longitudinally welded plate, as-welded Axial Ripple 3(G) Longitudinally welded plate...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002469
EISBN: 978-1-62708-194-8
... behavior, and a mechanical hysteresis loop develops between stress and strain. Low-cycle fatigue testing is performed at low frequencies, usually below 1 Hz. The demands of the application and the development of clip-on axial and diametral extensometers and of servocontrolled testing machines have...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
..., the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005870
EISBN: 978-1-62708-167-2
... and, in some cases, effects on residual stress. fatigue strength hardness induction hardening quenching residual stress steel Introduction Induction surface hardening is particularly suitable for axisymmetric or near-axisymmetric machine parts in steel or cast iron. There are two basic...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
...-load ratings are based on results of laboratory rolling-contact fatigue tests that have been conducted under conditions as near ideal as possible. Any departure from these reasonably ideal conditions, such as misalignment, vibration, shock loading, insufficient or inefficient lubrication, extremes...