Skip Nav Destination
Close Modal
By
Xiaoshu Xu, Jerald E. Jones
Search Results for
automatic welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 616
Search Results for automatic welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Arrangement for shielded automatic welding of titanium alloys in air. The b...
Available to PurchasePublished: 01 January 1993
Fig. 2 Arrangement for shielded automatic welding of titanium alloys in air. The baffle shown on the leading side of the torch (or electrode holder) is seldom used for GTAW, but is used for GMAW.
More
Image
Radiograph showing herringbone porosity in automatic weld due to disruption...
Available to PurchasePublished: 01 January 2002
Fig. 28 Radiograph showing herringbone porosity in automatic weld due to disruption of gas shield
More
Image
Recommended joint configurations used in automatic forge welding applicatio...
Available to PurchasePublished: 31 October 2011
Fig. 2 Recommended joint configurations used in automatic forge welding applications. Source: Ref 1
More
Image
Published: 01 January 1993
Image
Recommended joint configurations used in automatic forge welding applicatio...
Available to PurchasePublished: 01 January 1993
Fig. 2 Recommended joint configurations used in automatic forge welding applications. Source: Ref 1
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001356
EISBN: 978-1-62708-173-3
.... It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding...
Abstract
The melting temperature necessary to weld materials in the gas-tungsten arc welding (GTAW) process is obtained by maintaining an arc between a tungsten alloy electrode and a workpiece. This article discusses the advantages and limitations and applications of the GTAW process. It schematically illustrates the key components of a GTAW manual torch. The article describes the process parameters, such as welding current, shielding gases, and filler metal. It discusses the GTAW process variations in terms of manual welding, mechanized welding, narrow groove welding, and automatic welding.
Image
Section through an automatic gas tungsten arc weld containing voids caused ...
Available to PurchasePublished: 01 January 2002
Fig. 20 Section through an automatic gas tungsten arc weld containing voids caused by incomplete fusion. (a) Base metal at left is Incoloy 800 nickel alloy, that at right is 2.25Cr-1.0Mo alloy steel. Filler metal was ERNiCr-3, used with cold wire feed. Macrograph. 1×. (b) Micrograph
More
Book Chapter
Summary of Fusion Welding Processes
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005643
EISBN: 978-1-62708-174-0
... Power source and polarity Mechanics Shielding or cutting agent Typical applications Industrial use Metals Thickness range Electroslag welding Resistance heating of liquid slag Alternating or direct current Automatic; joint set up vertically; weld pool and slag contained by water-cooled...
Abstract
This article is a compilation of tables summarizing the fusion welding process. Included in the article is a table that presents the various fusion welding and cutting processes and their applications. Information on the general characteristics of arc welding processes is tabulated. The article also contains a list of the various criteria for selecting the suitable welding process for carbon steels.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
... different from that used in the semiautomatic FCAW process. The power supply should be rated for 100% duty cycle. Power supplies capable of outputs up to 1000 A may be required for some applications. Constant-current systems are very seldom used for mechanized and automatic welding. The wire feed system...
Abstract
In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients in FCAW electrodes are listed in a table.
Book Chapter
Welding of Magnesium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001439
EISBN: 978-1-62708-173-3
... conditions are given in Table 10 . Automatic Welding Automatic welding of magnesium alloys by GTAW is similar to manual welding, except that higher currents and welding speeds are used. Table 11 can be used as a guide to determine settings for automatic welding. Alternating current is best...
Abstract
Most magnesium alloys can be joined by gas-tungsten arc welding (GTAW) and gas-metal arc welding (GMAW). This article describes relative weldability ratings and provides information on joint design and surface preparation and the use of filler metals and shielding gases suitable to arc welding of magnesium alloys. The article describes the repair welding of castings, with examples. It concludes with a discussion on heat treatment of castings after welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005567
EISBN: 978-1-62708-174-0
... a weld by heating two or more workpieces to the welding temperature and forcing them through an extrusion die. This article illustrates typical joint configurations used for manual and automatic forge welding applications. It provides information on the common metals welded by coextrusion welding...
Abstract
Forge welding is a solid-state joining process in which the workpieces are heated to the welding temperature and then sufficient blows or force are applied to cause permanent deformation and bonding at the faying surfaces. Coextrusion welding is a solid-state process that produces a weld by heating two or more workpieces to the welding temperature and forcing them through an extrusion die. This article illustrates typical joint configurations used for manual and automatic forge welding applications. It provides information on the common metals welded by coextrusion welding, such as low-carbon steel, aluminum, copper, and copper alloys. The article also explains the common coextrusion behaviors.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001359
EISBN: 978-1-62708-173-3
... Abstract Submerged arc welding (SAW) is an arc welding process in which the arc is concealed by a blanket of granular and fusible flux. This article provides a schematic illustration of a typical setup for automatic SAW and discusses the advantages and limitations and the process applications...
Abstract
Submerged arc welding (SAW) is an arc welding process in which the arc is concealed by a blanket of granular and fusible flux. This article provides a schematic illustration of a typical setup for automatic SAW and discusses the advantages and limitations and the process applications of SAW. The article discusses flux classification relative to production method, relative to effect on alloy content of weld deposit, and relative to basicity index. It describes the procedural variations and the effect of weld current, weld voltage, electrical stickout, travel speed, and flux layer depth on weld bead characteristics. The article concludes with information on weld defects, such as lack of fusion, slag entrapment, solidification cracking, hydrogen cracking, or porosity.
Book Chapter
Forge Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001377
EISBN: 978-1-62708-173-3
... Abstract This article reviews forge welding and illustrates the typical joint configurations used for manual and automatic forge welding applications. automatic forge welding forge welding manual forge welding FORGE WELDING (FOW) is a solid-state process in which the workpieces...
Abstract
This article reviews forge welding and illustrates the typical joint configurations used for manual and automatic forge welding applications.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... negative may be used for GTAW. This polarity requires the use of 100% helium and thoriated, ceriated, or lanthanated tungsten electrodes. Welding aluminum using DCEN has proven advantageous for many automatic welding operations, especially when welding heavy sections. Because there is less tendency...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005601
EISBN: 978-1-62708-174-0
... a shielding gas source near the welding arc. The use of gas cylinders in these instances has proved unwieldy, hence making self-shielded products the favorite choice. Equipment The FCAW process uses semiautomatic, mechanized, and fully automatic welding systems. The basic equipment includes a power...
Abstract
This article describes the process features, advantages, limitations, and applications of the flux cored arc welding (FCAW) as well as the equipment used in the process. Base metals, namely, carbon and low-alloy steels, stainless steels, and nickel-base alloys, welded by the FCAW process are reviewed. The article illustrates the manufacturing process for the electrodes used in FCAW and outlines the classification of carbon and low-alloy steel, stainless steel, and nickel-base electrodes.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
... process: electrical shock, fumes and gases, arc radiation, and fire and explosion. arc radiation automatic welding electrical shock filler metals fire and explosion fumes gas tungsten arc welding power supplies robotic welding safety precautions shielding gas torch construction tungsten...
Abstract
The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations, and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW process: electrical shock, fumes and gases, arc radiation, and fire and explosion.
Book Chapter
Introduction to Arc Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005580
EISBN: 978-1-62708-174-0
... circumvent much of the resistance heating. Not until the development of semiautomatic guns and automatic welding heads, which are fed by continuous-electrode wires, was there a way of solving the resistance-heating problem and thus making feasible the use of high currents to speed the welding process...
Abstract
Arc welding is one of several fusion processes for joining metals. This article introduces the fundamentals of arc welding and provides a summary of its history and early discoveries.
Book Chapter
Intelligent Automation for Joining Technology
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001470
EISBN: 978-1-62708-173-3
... provided. arc welding intelligent automation joining off-line planning system real time adaptive control system WELDEXCELL AS JOINING TECHNOLOGY IMPROVES, industry is incorporating more types of automatic joining equipment and is expending significant efforts to make automated equipment...
Abstract
Efforts in improving the efficiency of automated equipment lead to combining automatic joining equipment with a modem computer technique eventually known as artificial intelligence (intelligent automation) that usually includes an off-line planning system and a real-time adaptive control system connected through a computer communications interface. This article focuses on the application of intelligent automation system to arc welding, called WELDEXCELL, and other joining processes. An outline of the interface between off-line planners and real-time control systems is also provided.
Book Chapter
Glossary of Terms: Welding Fundamentals and Processes
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005646
EISBN: 978-1-62708-174-0
... and the face of a llet weld. matic, machine, and automatic arc welding backing weld Backing in the form of a weld. adhesive bonding A materials joining process to transfer current, guide the consumable backstep sequence A longitudinal sequence in in which an adhesive is placed between the electrode...
Abstract
This article is a compilation of definitions for terms related to welding fundamentals and all welding processes. The processes include arc and resistance welding, friction stir welding, laser beam welding, explosive welding, and ultrasonic welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
... and the welding zone are surrounded and shielded by molten flux covered by a layer of unfused flux. The electrode is automatically held a short distance above the workpiece, with an arc between the electrode and the workpiece. As the electrode progresses along the joint, the lighter molten flux rises above...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
1