Skip Nav Destination
Close Modal
Search Results for
austenitic nitrocarburizing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 66 Search Results for
austenitic nitrocarburizing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005806
EISBN: 978-1-62708-165-8
... nitrocarburizing and austenitic nitrocarburizing. The article includes a discussion on the difficulties in specimen cleaning, importance of furnace purge, uses of pre and post oxidation, depassivation, or activation, and requirements for perfect nucleation in nitriding process. In nitriding, the successful...
Abstract
This article summarizes the terminology for gas reactions, and discusses low-temperature nitriding and nitrocarburizing of stainless steels. It describes the various nitriding processes, namely, high- and low-pressure nitriding, oxynitriding, sulfonitriding, oxysulfonitriding, ferritic nitrocarburizing and austenitic nitrocarburizing. The article includes a discussion on the difficulties in specimen cleaning, importance of furnace purge, uses of pre and post oxidation, depassivation, or activation, and requirements for perfect nucleation in nitriding process. In nitriding, the successful atmosphere control depends on various potentials. The article summarizes the methods of measuring potentials in nitriding and nitrocarburizing, provides useful information on the furnaces used, and the safety precautions to be followed in the nitriding process. It also describes the sample preparation procedures and testing methods to ensure the quality of the sample.
Image
Published: 01 August 2013
Fig. 3 Nitrocarburized steel surfaces. (a) Ferritic nitrocarburizing at 570 °C (1060 °F), where gen is the predominant element in the compound layer of epsilon (ε) carbonitride. (b) Low-temperature austenitic nitrocarburizing at 700 °C (1290 °F), with a martensitic or bainitic microstructure
More
Image
Published: 01 October 2014
Fig. 15 (a) Micrograph of low-temperature nitrocarburized austenitic stainless steel AISI 316 in an atmosphere of (partly) decomposed urea (in situ activation). The sample was heated to 490 °C (910 °F) in 45 min and thereafter immediately cooled. (b) Glow discharge optical emission
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006355
EISBN: 978-1-62708-192-4
... higher temperatures, between 550 and 585 °C (1020 and 1085 °F), but still below ferrite-austenite transformation temperature (Ac 1 ) in the iron-nitrogen system for ferritic steels. Nitriding and nitrocarburizing processes Table 4 Nitriding and nitrocarburizing processes Process type...
Abstract
The surface of irons and steels can be hardened by introducing nitrogen (nitriding), nitrogen and carbon (nitrocarburizing), or nitrogen and sulfur (sulfonitriding) into the surface. This article lists the principal reasons for nitriding and nitrocarburizing, and summarizes the typical characteristics of nitriding processes along with a general comparison of carburizing processes in a table. It describes the two most common nitriding methods: gas nitriding and ion (plasma) nitriding. The article discusses the wear behavior of nitrided layers and the wear resistance of selected steels. Rolling-contact fatigue (RCF) occurs in rolling contacts such as bearings, rolls, and gears. The article provides a discussion on rolling-contact fatigue of nitrided steels for aerospace bearing components.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005771
EISBN: 978-1-62708-165-8
..., nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting...
Abstract
Surface hardening improves the wear resistance of steel parts. This article focuses exclusively on the methods that involve surface and subsurface modification without any intentional buildup or increase in part dimensions. These include diffusion methods, such as carburizing, nitriding, carbonitriding, and austenitic and ferritic nitrocarburizing, as well as selective-hardening methods, such as laser transformation hardening, electron beam hardening, ion implantation, selective carburizing, and surface hardening with arc lamps. The article also discusses the factors affecting the choice of these surface-hardening methods.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005762
EISBN: 978-1-62708-165-8
... at the surface. In contrast, nitrocarburizing involves higher levels of nitrogen with a compound layer ( Fig. 3 ). There are two types of nitrocarburizing: ferritic and austenitic. Ferritic nitrocarburizing occurs at lower temperatures in the ferritic temperature range and involves diffusion of nitrogen...
Abstract
Carbonitriding is a modified form of carburizing that involves the introduction and diffusion of atomic nitrogen into the surface steel during carburization. This article discusses the composition, depth, and hardenability of a carburized case, and demonstrates how to control atmosphere in batch and continuous furnaces. It discusses the most important considerations in the selection of carbonitriding temperature. The article also describes the processing factors for minimizing retained austenite in the carbonitrided case. Hardness testing and carbonitriding of powder metallurgy parts, quenching and tempering of carbonitrided steel parts, and applications of carbonitriding are also covered in the article.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005959
EISBN: 978-1-62708-168-9
... by a discussion on physical metallurgy, including crystallographic identity, thermal stability and decomposition, nitrogen and carbon solubility in expanded austenite, and diffusion kinetics of interstitials. It provides a description of low-temperature nitriding and nitrocarburizing processes for primarily...
Abstract
Low-temperature surface hardening is mostly applied to austenitic stainless steels when a combination of excellent corrosion performance and wear performance is required. This article provides a brief history of low-temperature surface hardening of stainless steel, followed by a discussion on physical metallurgy, including crystallographic identity, thermal stability and decomposition, nitrogen and carbon solubility in expanded austenite, and diffusion kinetics of interstitials. It provides a description of low-temperature nitriding and nitrocarburizing processes for primarily austenitic and, to a lesser extent, other types of stainless steels along with practical examples and industrial applications of these steels.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005958
EISBN: 978-1-62708-168-9
.... atmosphere furnaces austenitizing fluidized-bed furnaces gas nitriding heat treatment plasma nitriding quenching salt bath furnaces salt bath nitrocarburizing tempering tool steel vacuum furnaces THE HEAT TREATMENT of tool steels covers an extremely wide variety of different requirements...
Abstract
This article provides a detailed discussion on the heating equipment used for austenitizing, quenching, and tempering tool steels. These include salt bath furnaces, controlled atmosphere furnaces, fluidized-bed furnaces, and vacuum furnaces. The article discusses the types of nitriding and nitrocarburizing processes and the equipment required for heat treating tool steels to improve hardness, wear resistance, and thermal fatigue. The various nitriding and nitrocarburizing processes covered are salt bath nitrocarburizing, gas nitriding and nitrocarburizing, and plasma nitriding and nitrocarburizing.
Image
Published: 01 October 2014
Fig. 13 Reflected-light micrographs of nitrocarburized and carburized and subsequently nitrided stainless steel showing two istinct zones of carbon- and nitrogen-expanded austenite (ex situ nickel activation). (a) AISI 304 nitrocarburized in a gas atmosphere of 14% C 3 H 6 -54% NH 3 -22% H 2
More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005986
EISBN: 978-1-62708-168-9
... of nitrided layers. It describes the structural changes on the surface of carbon steels, alloy steels, and austenitic stainless steels. The article explains the effects of the various nitriding processes, namely, gaseous nitriding, plasma nitriding, gaseous nitrocarburizing, and salt bath nitrocarburizing...
Abstract
Nitriding is a general term for all processes based on the addition of nitrogen to the surface of steel. When carbon is added along with the nitrogen, the process is called nitrocarburizing. This article provides a detailed discussion on the functional and structural properties of nitrided layers. It describes the structural changes on the surface of carbon steels, alloy steels, and austenitic stainless steels. The article explains the effects of the various nitriding processes, namely, gaseous nitriding, plasma nitriding, gaseous nitrocarburizing, and salt bath nitrocarburizing, on the structure and properties of nitrided layers.
Image
Published: 01 October 2014
Fig. 15 Micrograph of nitrocarburized AISI 316 (673 K for 4 h) showing the S-phase layer above the austenitic matrix. Source: Ref 14
More
Image
Published: 01 October 2014
Fig. 17 Micrograph of nitrocarburized AISI 316 (773 K for 22 h) showing the S-phase layer above the austenitic matrix with the nitrocarbide layer at the top. Source: Ref 14
More
Image
Published: 01 October 2014
Fig. 16 (a) Nitrided and (b) nitrocarburized 100 μm strip 7C27Mo2 (molybdenum-modified AISI 420) at different temperatures for 16 h. Samples were etched in Murakami's reagent. Carbon-containing martensite is stained by the etchant, while austenite and carbon-free martensite appear white
More
Image
in Gas Nitriding and Gas Nitrocarburizing of Steels
> Steel Heat Treating Fundamentals and Processes
Published: 01 August 2013
Fig. 19 Nitrocarburizing time to create a compound layer of approximately 10 μm on a microalloyed 1006 (high strength, low alloy) steel at varying temperatures. The nitriding potential has been adjusted to match the temperature and is controlled using NH 3 and dissociated NH 3 with a 10 vol
More
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005977
EISBN: 978-1-62708-168-9
... Micrograph of nitrocarburized AISI 316 (673 K for 4 h) showing the S-phase layer above the austenitic matrix. Source: Ref 14 Fig. 16 Micrograph of nitrided AISI 316 (773 K for 22 h) showing the S-phase layer above the austenitic matrix with the nitride layer at the top. Source: Ref 14...
Abstract
Stainless steels are essential for the modern industrial civilization because of their corrosion resistance, especially in the chemical, petrochemical, and food industries. This article discusses the classification of the various types of stainless steels, including martensitic, ferritic, austenitic, duplex (ferritic-austenitic), and precipitation-hardening stainless steels. It presents a checklist of characteristics to be considered in selecting the proper type of stainless steel for a specific application. The article also outlines the need to promote the formation of an effective protective passive layer in stainless steels. It discusses hardness, fatigue and fretting properties, tribological properties, wear resistance, and corrosion-wear process of the S-phase layer. The article describes two thermochemical nitriding techniques of stainless steels: plasma-assisted nitriding techniques and non-plasma assisted nitriding processes. It also describes the difficulties in stainless steel nitriding/carburizing.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005818
EISBN: 978-1-62708-165-8
... and nitrocarburizing of iron-base materials with gaseous processes. It describes nitriding potentials and the Lehrer diagram, carburizing potentials, controlled nitriding and nitrocarburizing, and the microstructural evolution of the compound layer and the diffusion zone. carburizing iron-nitrogen phase diagram...
Abstract
The nitriding process typically involves the introduction of nitrogen into the surface-adjacent zone of a component, usually at a temperature between 500 and 580 deg C. This article provides an overview of the essential aspects of the thermodynamics and kinetics of nitriding and nitrocarburizing of iron-base materials with gaseous processes. It describes nitriding potentials and the Lehrer diagram, carburizing potentials, controlled nitriding and nitrocarburizing, and the microstructural evolution of the compound layer and the diffusion zone.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.9781627081658
EISBN: 978-1-62708-165-8
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005791
EISBN: 978-1-62708-165-8
... studies, and applications of nitrocarburizing of steel. glow-discharge process microstructure nitrocarburizing plasma nitriding plasma nitrocarburizing process control steel Introduction Plasma nitriding (also known as ion nitriding, plasma ion nitriding, or glow-discharge nitriding...
Abstract
Plasma (ion) nitriding is a method of surface hardening using glow-discharge technology to introduce nascent (elemental) nitrogen to the surface of a metal part for subsequent diffusion into the material. This article describes the procedures and applications of plasma nitriding methods of steel. These methods include direct-current plasma nitriding, pulsed-current plasma nitriding, and active-screen plasma nitriding. The article reviews cold-walled and hot-walled furnaces used for plasma nitriding. It provides information on the importance of controlling three process parameters: atmosphere, pressure, and part temperature. The article includes a discussion on the influence of nitrogen concentration on case structure formation on nitrided steel, and explains the significance of microstructure, hardness, and fatigue strength on nitrided case. It also discusses processing, laboratory studies, and applications of nitrocarburizing of steel.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
...: the first type uses atmosphere austenitizing followed by salt quench and the second type employs austenitizing salt baths with rapid transfer to the quench salt. The article provides a detailed account on the construction, advantages and disadvantages, and limitations of isothermal quenching furnaces...
Abstract
This article provides information on the salt baths used for a variety of heat treatments, including heating, quenching, interrupted quenching (austempering and martempering), case hardening, and tempering. It describes two general types of salt bath systems for steel hardening: the first type uses atmosphere austenitizing followed by salt quench and the second type employs austenitizing salt baths with rapid transfer to the quench salt. The article provides a detailed account on the construction, advantages and disadvantages, and limitations of isothermal quenching furnaces, submerged-electrode furnaces, immersed-electrode furnaces, and externally heated furnaces. It discusses the important applications of various furnace designs, including the austempering of ductile iron, the hardening of tool steels, and the isothermal annealing of high-alloy steels.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005956
EISBN: 978-1-62708-166-5
... to the local volume change during transformation from a ferrite-cementite phase mixture to austenite. Additionally, residual stresses introduced during the machining of the samples must be taken into account ( Ref 1 ). During heating to a temperature below Ac 1 without any transformation occurring...
Abstract
The process of case hardening of steel includes three consecutive steps of heat treatment: heating; the thermochemical process with the enrichment of the surface area during the carburizing or carbonitriding stage with carbon and nitrogen; and the subsequent quenching process for hardening. This article provides a model-based description of the development of residual stresses during case hardening. It also describes the influence and effects of residual stresses and distortion in hardening, carburizing, and nitriding processes of the steel.
1