Skip Nav Destination
Close Modal
Search Results for
austenite-to-ausferrite transformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25 Search Results for
austenite-to-ausferrite transformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006319
EISBN: 978-1-62708-179-5
.... The article reviews several factors, such as presence of graphite and austenite grain size, which affect the transformation rate of austenite during austempering of free-graphite cast irons. austenite austenite grain size austenite-to-ausferrite transformation bainite cast iron graphite heat...
Abstract
The transformation of austenite of cast irons represents a more complex and less studied subject. This article discusses the general features of the decomposition of austenite into bainite. It describes the heat treatment cycles of austempered cast iron microstructure. The article reviews several factors, such as presence of graphite and austenite grain size, which affect the transformation rate of austenite during austempering of free-graphite cast irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006339
EISBN: 978-1-62708-179-5
... the martensite formation temperature, at which it is held while austenite partially transforms to ferrite without forming pearlite. The resulting matrix is a very fine-grained mixture of austenite and ferrite that combines good strength with ductility ( Ref 1 , Ref 2 , 3 ). The ASTM A897/A897-16, ISO 17804...
Abstract
Austempered ductile iron (ADI) results from a specialty heat treatment of ductile cast iron. This article discusses the production of austempered ductile iron by heat treatment. The austempered ductile iron grades, according to ISO 17804 and EN 1564, are presented in a table. For economic reasons, or to avoid metallurgical problems, combinations of alloys are often used to achieve the desired hardenability in austempered ductile iron. The article provides information on the alloy combinations for austempered ductile iron. The mechanical properties, fracture toughness, fatigue, and abrasion resistance of the austempered ductile iron are discussed. The article concludes with information on the applications for austempered ductile iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006322
EISBN: 978-1-62708-179-5
... Characteristics The basic structural differences between the ferritic, pearlitic, martensitic, and ausferritic classes are explained in Fig. 1 to 3 . Figures 1 and 2 are schematics of time-temperature transformation diagrams for continuous cooling and isothermal conditions, respectively. Figure 1...
Abstract
Ductile cast irons are heat treated primarily to create matrix microstructures and associated mechanical properties not readily obtained in the as-cast condition. This article discusses the most important heat treatments of ductile irons and their purposes. International standards of ductile iron provided by ASTM International, the International Organization for Standardization (ISO), and SAE International are presented in a table. The article explains basic structural differences between the ferritic, pearlitic, martensitic, and ausferritic classes. It presents recommended practices for annealing ductile iron castings for different alloy contents and for castings with and without eutectic carbides. The article discusses the induction surface hardening and remelt hardening of ductile iron. It concludes with information on the effect of heat treatment on fatigue strength of ductile iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006300
EISBN: 978-1-62708-179-5
... ferrite and pearlite, and the article “The Austenite-to-Ausferrite Transformation” covers bainite and martensite. In case ferrite appears, there is also some additional graphite that precipitates. Stable and Metastable Three-Phase Fields In the Fe-C phase diagram presented in “Thermodynamics...
Abstract
This article discusses the stable and metastable three-phase fields in the binary Fe-C phase diagram. It schematically illustrates that austenite decomposition requires accounting for nucleation and growth of ferrite and then nucleation and growth of pearlite in the remaining untransformed volume. The article describes the austenite decomposition to ferrite and pearlite in spheroidal graphite irons and lamellar graphite irons. It provides a discussion on modeling austenite decomposition to ferrite and pearlite.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005937
EISBN: 978-1-62708-168-9
.... This deterioration in properties is likely caused by the segregation of Mo to cell boundaries and the formation of carbides. The level of Mo should be restricted to not more than 0.30% in heavy section castings. Source: Ref 4 Fig. 18 Time to 5% transformed for a low-alloy ductile iron austenitized...
Abstract
Ductile cast irons are heat treated to create matrix microstructures and associated mechanical properties not readily obtained in the as-cast condition. This article provides a detailed account of the general characteristics of ductile irons. It discusses the most important heat treatments of ductile irons, namely, stress relieving, austenitizing, annealing, normalizing, quenching, martempering, austempering, and surface hardening. The article elucidates the effects of these heat treatments on the mechanical properties of the ductile irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006294
EISBN: 978-1-62708-179-5
... higher strength and wear resistance. The difference between ausferrite and bainite is further discussed in “The Austenite-to-Ausferrite Transformation” article in this Volume. Fig. 26 Austempering process for cast iron. Source: Ref 34 The advantage of austempering is that it results...
Abstract
This article discusses criteria that can be used for the classification of cast iron: fracture aspect, graphite shape, microstructure of the matrix, commercial designation, and mechanical properties. It addresses the main factors of influence on the structure of cast iron, including chemical composition, cooling rate, and heat treatment. The article describes some basic principles of cast iron metallurgy. It discusses the main effects of the chemical composition of ductile iron and compacted graphite (CG) iron. The composition of malleable irons must be selected in such a way as to produce a white as-cast structure and to allow for fast annealing times. Some typical compositions of malleable irons are presented in a table. The article concludes with information on special cast irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006296
EISBN: 978-1-62708-179-5
... not affect the composition of the carbide phase. The designations of ferrite (α), austenite (γ), and Fe 3 C, therefore, can be used in the ternary system to identify the same phases that occur in the Fe-Fe 3 C binary system. However, silicon raises the transformation temperature range, decreases carbon...
Abstract
Cast irons, like steels, are iron-carbon alloys but with higher carbon levels than steels to take advantage of eutectic solidification in the binary iron-carbon system. This article introduces the solid-state heat treatment of iron castings and describes the various processes of heat treatment of cast iron. It provides information on stress relieving, annealing, normalizing, through hardening, and surface hardening of these castings. The article discusses general considerations for the heat treatment of cast iron. Cast irons are occasionally nitrided for various applications with the aim of enhancing surface hardness and corrosion resistance of the products. The article describes molten salt bath cyaniding and ion nitriding of cast iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006350
EISBN: 978-1-62708-179-5
..., then isothermally transformed at 280 °C (535 °F) for 2 h and air cooled. This transformation is never allowed to go to completion. It is believed that carbon diffuses from the ausferrite to the austenite, making it stable. The hardness of this specimen was 525 HV and 54.8 HRC. This is usually the lowest isothermal...
Abstract
Metallographic techniques for ductile irons are similar to those for other cast irons but more difficult than for steels, because graphite retention is a challenging task. This article presents recommended procedures to prepare ductile irons. It discusses three contemporary approaches for preparing ductile cast iron specimens with a wide range of phases and constituents as well as variations in graphite morphologies. A wide variety of matrix microstructures can be obtained in ductile irons. Examples are presented using a variety of etchants. Control of the nodularity of graphite in ductile irons is critical to their performance. The article presents details concerning the characterization of the graphite nodules.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005322
EISBN: 978-1-62708-187-0
... principal structures that develop during this continuous cooling are (in order) ferrite, pearlite, bainite, and martensite. Other matrix structures such as ausferrite may be formed during specialized heat treatments. Increased cooling rates cause the transformation of austenite to occur at increasingly...
Abstract
The term cast iron designates a group of materials that contain more than one constituent in their microstructure due to excess carbon that result in unique characteristics such as the fracture appearance and graphite morphology. This article discusses the classification of cast iron and the various metallurgical aspects, such as the composition, alloying element, solidification, and graphite morphologies, of different types of cast iron. It describes the physical properties for various cast irons and the influence of microstructure and chemical composition on each property. The article provides a detailed account on thermal properties, conductive properties, magnetic properties, and acoustic properties of cast iron. It also examines heat treatment, namely, stress relieving, annealing, normalizing, through hardening, and surface hardening. The article presents a discussion on the welding, machining and grinding, and coating of the types of cast iron.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005929
EISBN: 978-1-62708-166-5
... of the metal from the austenitizing temperature to a point above the martensite start (M s ) temperature, where it is held for a specified period of time, followed by cooling in air. This helps reduce distortion caused by uneven or nonuniform quenching, thermal stresses, and phase-transformation stresses...
Abstract
This article provides information on the salt baths used for a variety of heat treatments, including heating, quenching, interrupted quenching (austempering and martempering), case hardening, and tempering. It describes two general types of salt bath systems for steel hardening: the first type uses atmosphere austenitizing followed by salt quench and the second type employs austenitizing salt baths with rapid transfer to the quench salt. The article provides a detailed account on the construction, advantages and disadvantages, and limitations of isothermal quenching furnaces, submerged-electrode furnaces, immersed-electrode furnaces, and externally heated furnaces. It discusses the important applications of various furnace designs, including the austempering of ductile iron, the hardening of tool steels, and the isothermal annealing of high-alloy steels.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006327
EISBN: 978-1-62708-179-5
... the Liquid/Solid Transformation” in this Volume ( Ref 7 , 8 ). The austenite commonly nucleates on the mold wall, resulting in columnar growth. At higher undercooling, the columnar-to-equiaxed transition occurs as the austenite nucleates on heterogeneities in the bulk liquid metal. The primary austenite...
Abstract
From the point of view of economics and ecology, thin-wall ductile iron (TWDI) castings can compete in terms of mechanical properties with the light castings made of aluminum alloys. This article discusses the effect of technological factors on the cooling rate and physicochemical state of the liquid metal for preparing thin-wall castings with good mechanical properties and performance while avoiding casting defects. It describes a variety of defects that may appear during the production of TWDI castings, such as casting skin anomalies (e.g., flake graphite, graphite segregation), graphite clusters, exploded graphite, slag inclusions, shrinkage porosity, eutectic chill and secondary carbides, and cold shuts. The article reviews the tensile, fatigue, impact, and wear properties of TWDI castings. It provides information on the production and applications of TWDI castings.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006325
EISBN: 978-1-62708-179-5
... strength and are more ductile than pearlitic irons. However, for standard-grade ductile cast iron, ferritic/pearlitic grades are also common. The pearlite content depends on the cooling rate during the austenite-to-ferrite phase transformation at approximately 700 °C (1290 °F). In casting processes...
Abstract
The mechanical properties of ductile cast irons are determined largely by the microstructure of the steel matrix in combination with the shape, size, and distribution of the graphite nodules. This article describes the designation of ductile cast irons according to the ASTM International designation system and reviews standard-grade ductile cast irons. An overview of the most commonly used standards related to designation and specification of ductile cast iron is presented in a table. This article discusses the use of low-alloy ductile cast irons at elevated temperatures and the chemical compositions and some mechanical properties of austenitic ductile cast irons. The article concludes with a discussion on heat treatment of austempered ductile iron.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005820
EISBN: 978-1-62708-165-8
... are isothermally quenched for up to 24 h to achieve maximum properties. Austempered ductile iron (ADI) quench processes can range from 30 min to over 4 h to transform the microstructure from austenite to the acicular ferrite and carbon-stabilized austenite structure known as ausferrite . Step quenching...
Abstract
Molten salt, including nitrite/nitrate salts, is the quenching medium most commonly used in austempering and marquenching of ferrous materials. This article describes the use of molten salts in the quenching of ferrous materials. It provides information on the processing and operation of salt quenching including considerations of time, temperature, environment, and safety, as well as critical characteristics such as the composition of the quenchant, agitation, and water additions.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005324
EISBN: 978-1-62708-187-0
... sections will have a lower hardness and strength, unless the analysis is adjusted to compensate for the slower cooling, or unless the cooling rate of the casting is increased through the transformation temperature range. Heavier castings are often alloyed and/or heat treated to overcome this effect...
Abstract
This article begins with a description of the classes and grades of ductile iron. It discusses the factors affecting the mechanical properties of ductile iron. The article reviews the hardness properties, tensile properties, shear and torsional properties, compressive properties, fatigue properties, fracture toughness, and physical properties of ductile iron and compares them with other cast irons to aid the designer in materials selection. It concludes with information on austempered ductile iron.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... of producing thin-wall castings with complicated geometries. The properties of the five ADI grades are given in Table 5 . An ideal ADI consists of acicular ferrite and carbon-stabilized austenite, also known as ausferrite; however, its actual microstructure can be more complicated ( Fig. 22...
Abstract
Machining of cast iron involves removing metal from the cast part, usually by cutting with a power-driven machine tool. This article discusses the factors that influence machinability, the methods used to evaluate machinability of cast irons, the effects of cast iron microstructure on cutting tool life, and the importance of as-cast surface integrity on the machining variation. It presents examples of cutting tool materials selection for different cast iron grades, and describes the effects of coolants on the machining of cast irons. A chart showing different cutting materials and cutting speed ranges for selected iron-carbon alloys is also presented. Different types of cutting tool wear observed during turning are schematically illustrated.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006345
EISBN: 978-1-62708-179-5
... hardness and strength, unless the analysis is adjusted to compensate for the slower cooling, or unless the cooling rate of the casting is increased through the transformation temperature range. Heavier castings are often alloyed and/or heat treated to overcome this effect and achieve a higher strength...
Abstract
Ductile iron, also known as nodular iron or spheroidal graphite iron, is second to gray iron in the amount of casting produced. This article discusses the common grades of ductile iron that differ primarily by the matrix structure that contains the spherical graphite. The grades of ductile iron designated by their tensile properties in the specification ASTM A536 are presented in a table. The article various reviews factors, such as microstructure, composition, and section effect, affecting the mechanical properties of ductile iron. It discusses the hardness properties, tensile properties, shear and torsional properties, damping capacity, compressive properties, fatigue properties, and fracture toughness of ductile iron. The article concludes with information on the applications of austempered ductile iron.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005945
EISBN: 978-1-62708-168-9
.... Variations in cooling rate, from point to point, also can exaggerate the production of residual stresses because, in some instances, it is possible for austenite transformation products to be different in sections with different cooling rates. For example, in rapidly cooled sections in moderately alloyed...
Abstract
This article introduces the general principles and applications of heat treatment to iron castings. It provides a detailed discussion on the heat treatment processes, namely, stress relieving, annealing, normalizing, throughhardening, and surface hardening for various types of cast irons. These include gray iron, ductile iron, compacted graphite iron, white iron, malleable iron, and high-alloy iron. The article describes how to control temperature and atmosphere during the heat treatment of the iron castings.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003752
EISBN: 978-1-62708-177-1
...), which caused martensite to form in areas where the austenite stability was low. When martensite forms, it does so by a shear transformation that produces surface movement at a free surface. The specimen was brought back to room temperature, cleaned off, dried, and viewed with Nomarski DIC, producing...
Abstract
This article is a compilation of color etchants that have been developed for a limited number of metals and alloys. It describes the optical methods for producing color, such as polarized light and differential interference contrast, with illustrations. The article discusses film formation and interference techniques such as anodizing, chemical etching, and tint etching. It provides a description of reagents that deposit sulfide films and molybdate films. The article concludes with a discussion on the thermal and vapor deposition methods to produce color.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003765
EISBN: 978-1-62708-177-1
... occurs due to the change in size of the plate martensite as transformation progresses. However, this is not the only factor, because some of the larger plates are also brown. There is only a very small amount of austenite, which surrounds the acicular ferrite at the graphite nodules and in the matrix...
Abstract
This article describes the metallographic specimen preparation procedures for cast iron test samples, including mounting, grinding, polishing, and etching. It discusses the makeup and use of black-and-white and selective color etchants and where one might be preferred over the other. The article provides information on nearly 100 micrographs, discussing the microstructure of flake graphite in gray iron, nodular graphite in ductile iron, and temper graphite in malleable iron. It also examines the matrix microstructures of gray, ductile, compacted, and malleable cast iron samples.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006307
EISBN: 978-1-62708-179-5
..., it was concluded that a pure diffusion model was not sufficient to describe the transformation rate of austenite into ferrite and graphite, as previously proposed in the literature. By introducing an interfacial mass-transfer resistance at the graphite/ferrite interface, to control the incorporation rate of carbon...
Abstract
This article describes a method to predict mechanical properties of cast iron materials and illustrates how to use the predictions in computer-aided tools for the analysis of castings subjected to load. It outlines some ways to predict the hardness and elastic modulus of cast iron without going into dislocation theory. The article discusses modeling of hardness in cast iron based on a regular solution equation in which the properties of each phase depend on chemical composition and coarseness. It describes the evaluation of material parameters from the tensile stress-strain curve. The article concludes with an illustration of a finite-element method (FEM) model containing heterogeneous mechanical properties using local material definitions.